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CHAPTER 1

INTRODUCTION

The necessity of dealing with signals and systems having two

or *more independent parameters is now well recognized.

Specific areas where multidimensional signal processing find

applications include image processing, remote sensing, target

tracking, robotics, geophysical and astronomical data

processing. A wide variety of problems belonging to these

categories can be dealt with either by the methods of
multidimensional frequency selective filtering or by

employing multidimensional modelling schemes. For most

practical applications two specific types of multidimensional

filters are of interest. To exemplify the situation it may be

recalled that in image processing type applications the

processing scheme is mandated to be rotation invariant which

requires that pass/stop regions of the frequency response of

the filter be spherically symmetric in the multidimensional

frequency hyperspace. On the other hand, in the problem of

discriminating image regions moving with different velocities

(e.g., a target against a background) the dynamic scene can

be modelled as a time dependent intensity distribution

s(x,y,t) or its Fourier transform S(u,v,f) where u, v are the

spatial frequencies and f is the temporal frequency. We then

have:

S(x,y,.t) - m(X-Xo-Cxt,y-yo-Cyt) +
(l-X(X-Xo-Cxt,y-Yo-C yt) ].b(x-d x t , y - d y t )  j

(1.1)

where m(x,y) and b(x,y) are textucal functions of the object

and the background; Axy) is a mask function whose value is
one in regions where the object is present and zero in
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regions where no object is present; (x, oy) is the coordinate

of the sensor. Considering the fourier transform of (1.1) we

then have:

S(u,v,f)- M(u,v,f) + B(u,v,f) - A(u,v,f)*B(u,v,f) (1.2)

where * denotes 3-D convolution. Analysis of this equation
reveals that the spectral energies of image regions moving
with different velocities are concentrated in different

planes in the 3-D (u,v,f) frequency space. Therefore, they
can be discriminated by linear spatio-temporal filters the
frequency responses of which are fitted to different
velocity planes.

Furthermore, due to possible interrelations and redundancies

in the large amount of image data one needs a spatio-temporal
3-D stochastic model of the data field, where again two of
the dimensions indicate the space coordinates and the third
dimension represents the time coordinate. The need for

estimation, prediction, noise filtering etc. associated with
problems such as displacement estimation, movement

compensated prediction of time varying images thus become

apparent.

Considerations other than those mentioned above are also

highly important in the successful operation of a
multidimensional recursive digital filter when realization

in hardware is sought. These are: (i) insensitivity to

coefficient pertubation i.e., numerical stability to counter

the effects of inevitable rounding and truncation of signal

values (ii) fault tolerance i.e., insensitivity of the

overall filter performance to sudden and unexpected faults in

digital circuitry (iii) feasibility of hardware

implementation in currently emerging high speed architectures

e.g., the systolic architecture and finally, (iv) the
property that it can be conveniently made adaptive when the
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signal characteristics vary in the spatial or in the temporal

domain.

The class of one-dimensional digital filters which has been

found to satisfy all of the desirable characteristics

mentioned above can, from a fundamental point of view, be

broadly categorized as the structurally passive filters.

Structurally passive digital filters are those which are not

only passive (i.e, nonenergy generating in a discrete sense)
from the input output point of view, but the most elementary

building blocks which constitute the filter structure are
also. The fact that structurally passivity, in addition to

being responsible for the properties of numerical stability,

fault tolerant and adaptivity, can also be exploited towards
the goal of implementing the filter in highspeed VLSI
structures is now known in the one-dimensional context. The
well known lattice filters, wave digital filters and the

orthogonal filters belong-to this class of filters.

Steps towards the analysis and design of multidimensional
structurally passive digital filters have been taken in the
investigation reported here. Since an appropriate transform
domain description of multidimensional passive (or lossless)
linear shift invariant quarter plane filters requires a
proper notion of stable multidimensional polynomials
previously not considered in the literature our investigation

starts from a reexamination of multidimensional stability

concepts from a fundamental standpoint. In chapter 2 it is
shown that all of the known results on stable
multidimensional polynomials can be derived via the
elementary artifice of a continuity property of zeros of a

polynomial as a function of its coefficients. Several
previously unrecognized classes of multidimensional s:able
polynomials crucial to the transform domain description of

multidimensional passive continuous systems are identified

for the first time in chapter 3 by utilizing analytical

-3-



techniques which are largely similar to those used in chapter

2. Certain theoretical results on the analysis of passive

multidimensional continuous systems are also derived here.

Synthesis of multidimensional structurally passive recursive

digital filters directly in the discrete domain form the

contents of chapter 4. Motivated by one-dimensional examples

such as the digital lattice filters and its potential
desirability in pipelined implementation, the further
topological constraint that the filter consist of cascade
interconnection of elementary passive building blocks is
imposed in the problem formulation. Necessary and sufficient

conditions for the feasibility of such synthesis are derived.
Since the design problems of many of the known
one-dimensional structurally passive filters can be viewed as
special cases of the results developed, new algorithms for
one-dimensional design fall out as a byproduct of this
discussion.

More specific practical questions of image interpolation and

decimation are examined in chapter 5 by formulating the
problems in terms of frequency domain digital filtering.
Certain computational FIR-type structures are derived which
exploit full advantages of combined pipelineability and
parallelism when high speed hardware implementation of the
resulting filters are sought. Experiments with real as well

as synthetic two-dimensional data are reported.

Conclusions and recommendations for further research are
chalked out in chapter 6.

Each of the following chapters are self contained and can be
read independently. For similar discussions in the open

literature we refer to the publications in (1), (21, (3] and

(4) in the following.

-4 -
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CHAPTER 2

SIMPLE PROOFS OF STABILITY RELATED

PROPERTIES OF MULTIDIMENSIONAL POLYNOMIALS

2.1. Introduction

The criterion for bounded-input-bounded-output property of

multidimensional (k-D) linear shift invariant systems, when
the rational transfer function associated with the system
does not have non-essential singularities of the second kind
on the distinguished boundary of the polydomain under
consideration, is well established (1-51. More specifically,
if the transfer function of a k-dimensional discrete time

system is given by H(z) as in (2.1), where

H(z) - A(z)/B(z) (2.1)

A(z) - A(zl,z 2 ,...,zk) and B(z) - B(zlz 2 ,...,zk) are

relatively prime polynomials in the k variables z -

(Zl,Z2,...,zk) then under the restrictive hypothesis that

A(z) and B(z) do not have any common zero on the
distinguished boundary Izil - 1, i - 1 to k (also to be
denoted as 111 - 1 in the forthcomming discussion) of the
polydomain Izil j 1, i - 1,2,...,k (also to be expressed as

I:! j 1), the system produces a bounded output in response to

a bounded input if and only if B(z) is a strict sense
Hurwitz polynomial, i.e., (2.2) is satisfied.

B(z) # 0 for 1:1 f 1 (2.2)

Since for a given polynomial B(z) it is not possible to test

for condition (2.2) directly, a number of alternative but

equivalent conditions, which are easier to test for, have

been derived by Strintzis, DeCarlo, et. al. (7] and others.A

wt
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sumaary of all these results are available in the works of

Jury (81 and Bose (11. A variety of different methods of U
proofs of these results have appeared so far in the

literature. Strintzis in (61 uses analytic function theory,

DeCarlo et. al. uses homotopy theory expounded in Rudins book

(9]. It has been pointed out (1,101 that the results just

mentioned can be derived as special cases of Rudin's theorem

(Theorem 4.7.2, pp.87 in (9]). Delsarte, Genin and Kamp (10]

have shown that all these results including Rudin's theorem

can be proved via a number of elementary one-dimensional

(1-D) steps. However, the proofs given in (101 still require

the use of some function theoretic results, which may be

inaccessible to an engineering reader. The present report

deals with proofs of the above results , which are very

simple and highly intuitive as well. The technique dwells on

the fact that the zeros of a polynomial can be viewed as

continuous functions of its coefficients. A correct and

complete statement of this continuity property, which

includes all possible degenerate cases (although restricted

to polynomials in one variable), is available e.g. in (111

(Theorem 4, p.19, including footnote), (141 (S4.4), and (14a]

(p.200). The technique has already proven to be a very 4'
powerful tool in recent studies on passive multivariable

network theory (121. A similar effort in this direction is

noted in (131. Howev.r, (131 deals with the two-variable case

(k - 2) only, and a fully appropriate discussion of results

including all possible degenerate cases are not given.

A complete statement of the continuity property of zeros of a

multivariable polynomial as a function of its coefficients,

which includes all the degenerate cases, is given in Section I
2.2. Section 2.3 contains proofs of the main theorems of
Anderson, Jury (161 and those due to Strintzis (61, DeCarlo

et al. (7]. Another result originally proved by DeCarlo,

Murray and Saeks (71 forms the main topic of discussion in

Section 2.4, where it is again shown that all related results

-7--
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can be derived from the continuity property of zeros of a

polynomial as a function of its coefficients. In section 2.5

it is shown how the results of section 2.3 and 2.4, when used

with further continuity type arguments lead up to Rudin's

theorem mentioned earlier. At this point a few

generalizations of Rudin's theorem are also proven as

consequences of discussions of earlier sections of the

report. Finally, the report is summarized and conclusions 
are

drawn in Section 2.6.

VS
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2.2. Continuity property of the zeros of a polynomial as a

function of its coefficients.

Due to the fact that the utilization of the aforementioned

continuity property in stability related problems in the

context of multi-dimensional polynomials is the main

contribution of this report and that a proper formulation of

the property needed for our purposes has not until recently

been known to be available, at least not in the engineering

literature, we undertake to give a brief exposition of the

result without giving any details of proofs.

The one variable version of the following result is well

known (111 in mathematical literature. For a proof see, for

example, (14). Let g(z) M Z A z! be a polynomial in z -

(ZlZ 2 ,...,Zk), where N deA Aes-he set of k-tuples v such

that A. is not zero. Also let Ilzil 2 {zl2 + z212 + ... +
IZkl .-Then, if the coefficient A. are assumed to be variable

quantities with certain initial 7alues A. , and gO(z) be the

corresponding expression for g(z), the foT 2owing two mutually

exclusive cases can arise:

(1) g0 (z) is identically zero, i.e., Av0 : 0 for all

10 cN. 
-0

(2) g0 (z) 9 0, i.e., there exists at least one v c N

such that A. V 0.

If in this latter case there exists a z0 with finite I E0Il
such that g0 (z0 ) - 0, then to any c > 0 we can make

correspond a S > 0 such that for IA~ - A 20 < & , for all v c

N, there exists a value of z for which we have Iz - - I1 <
c as well as g(z) - 0. The proof of the above result follows

from its one-variable counterpart, and is available in (151.

-9-
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For the present purpose, however, a different formulation of

the above principle proves to be more useful and is

elaborated upon next. Assume the AV for each v c N to be

continuous functions of some vector t, say, AV - AV(t).

Consequently, we can write g - g(z,t). Consider-first-a fixed

value t - to of t such that g(z0 ,t0 ) - 0 for some z - Z0"

Then one of the following two mutually exclusive cases must

hold true:

(1) AV(tO) - 0 for all v C N, i.e., g(z,t0 ) - 0 for all

z - (z z2,...,Zk).

(2) A(t0 ) # 0 for at least one v C N.

In the latter case, if we move t along a continuous curve

from its initial value to, it is possible to move also each

zi i - 1 to k along certain continuous curves in their

respective zi - planes in such a way that g(z,t) - 0

continues to hold true, until a value t - t f oft is reached

sjch that either AV(tf) - 0 for all v c N or, fort

approaching tf, IziT 4 - for at least one i in 1 - i - k.

For k-1, this result amounts simply to a reformulation of a

corresponding result in (14a) (S39), and it can be easily

extended to the case k>l by using the same simple approach as

in Appexdix 1 of (15).

I
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2.3. Simplified proofs of results of Strintzis [6] and

DeCarlo et. al. [7) and Anderson and Jury [161

We will first need the following lemma.
Lemma 2.1: Let f(z) - f(zl,z2,...,zk) be a polynomial in z -

(ZlIz2,...,Zk). Assume that there exists a 0

(ZlOIZ20,...,ZkO) in J.1R I such that-f(zo0 ) - 0, and Izi0I -

1 holds for v of the k variables zi, where v is any integer

0 .. v < k-i. Then there exists a z6 - (zl0 'Z20,''.,Zk 0 ) in

I!61 1 such that f(z) - 0 and Izj 0I - 1 holds for at least
(V+1) of the ziO. in particular, such a zero then exists
with z - zi for all those i for which IozI - 1.

Proof: No loss of generality occurs in assuming that Izi0  -

1 for i - 1 to v . Let us freeze the variables zi at zi - i0
for i - 1 to v. If f(z) is independent of at least one of the
variables z to zk , say zk, then the proof is immediate by
choosing z!0  Zi0 for i - 1 to k-i and any zj0 with Izj0I -
1.

Next, assume. that f(z) involves (i.e., actually depends on)
Zk_ 1 and zk. Let us now freeze the variables zi at zi -Z iO
for i - 1 to (k-2), where thus Izi0I - 1 for i - 1 to v and

Izi0I < 1 for i- (v l) to (k-2), and consider a continuous
path rkl from zk_ 1,0 leading up to the unit circle in the zk

plane. As zk- 1 is moved continuously along rkl the variable
zk can be moved along continuous path rk starting from ZkO

such that f(z) - 0 remains satisfied. The only exception that
could arise is that for some zk- 1 - *k-1 on. Fk_ , with

lak-11<1, the polynomial f, defined by fl(zk-l,zk)-
f(zlO,.*k-2,0 zk-l'zk) is zero for all zk; the proof is
then completed by choosing z!0 - zi0 for 1 < i < k-2, z

- 2k-1' and any zi0 such that Nz 0 l - 1. If however no such
ak-i exists, then by invoking the continuity property of
zeros of a polynomial, mentioned in Section 2.2, it follows

that either zk- 1 or zk (or both) will reach the unit circle

-11-
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in the corresponding z, plane. We would then have constructed

a zero z6 of f(z) such that Jz - 1 for at least (v+l) of

the k variables z .

We are now in a position to prove the theorem due to

Strintzis[6] and DeCarlo et. al.[71 mentioned earlier.

Theorem 2.2: If f(z) is a polynomial in z - (zl,z2,---zk)

then f(z) $ 0 in 1.! 1 if and only if the following

conditions simultaneously hold true:

(a) f(s) # 0 for .S1 - 1, i.e.,Izil - 1 for i - 1 to k.

(b) if j is any integer in 1 < j I k, then f(z) ' 0 for

zi-ijI, i - 1,2,...,(j-l),(j+l),...k, and Iz l 1, where the

Vij's are some complex numbers with JyijJ-1.

Proof: Necessity of the theorem is obvious. To prove

sufficiency let us assume that there exists a -O M

(z1 0 ,z2 0 ,...,zkO) with f( 0 ) - 0, tziol 1 1 for 1-1 to k. In

view of lemma 2.1 we may assume that (k-1) of the k variables

(ZlZ2,...,zk) are located on the unit circles in the

corresponding zi-planes. A renumbering of the variables, if

necessary, will show that no loss of generality occurs in

assuming Izi 0 l - 1 for i - 1 to (k-i). Due to condition (a)

of the theorem, we then have lzkO < 1. This latter

conclusion , however, implies in particular that f(z) is not

independent of zk' Next we successively move the variables

zi , i-1 to (k-i) from zi0 to Tik continuously along the arcs

ri of the corresponding unit circles. The variable zk may

then be moved along a path rk starting from zk0 such that

f(s) - 0 remains satisfied. In this process it is impossible

to have f(s) - 0 for some zi - YiO on ri , 1 < i < k-i, and

all zk because otherwise a contradiction with condition (a)

of the theorem is easily arrived at by choosing zk at any

point on the unit circle IZki - 1. Invoking the continuity

property of the zeros of a polynomial, it then follows that

-12-
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rk can be chosen to be a continuous path in the zk-plane and I
the process described above can only have one of the

following two outcomes. Either we reach zi - Yik' i - 1 to

(k-1) with zk remaining such that Izkl < 1 or the path rk

described by zk has at least one point in common with the

unit circle IZkI - 1. In the former case, the condition (b)

of the theorem is violated, whereas in the latter case the

condition (a) of the theorem is violated. The proof of the

theorem is thus complete.

Remark: The proof does not assume that f(!) is a polynomial

or that it is a holomorphic function. All that is required is

that the continuity property presented in Section 2.2 holds.

A similar remark holds for other results in this paper.

We next need to prove a result due to Anderson and Jury [16]

via the continuity argument. We need, however, the following

lemma, which will also prove to be useful in other

developments to follow.

Lemma 2.3: Let f(z) be a polynomial in z - (zl,z2,...zk) and

let the set of indices i - 1 to k be the union of two

disjoint subsets I1 and 1.. Then f(z) * 0 in 1zi 1 1 if and

only if the following conditions hold true sumultaneously:

(a) f(z) o 0 if zi - ai for i e I,; Izil < 1 for i c 12 where

the ai, for all i c I1 , are some complex numbers such that

jail S 1

(b) f() o 0 if Izil I for i c I; lzil - 1 for i C 12.

Proof: Necessity is obvious. To prove sufficiency, let it be

assumed for contradiction that f(z) has a zero at z - z0 =

(zl0 1z20,...Zk0) with I.01 S i. By virtue of Lemma 2.1, no

loss of generality occurs in assuming that there exists a

-13-



fixed integer p such that Iz.0 1 S 1 and that Izi0I - 1 for

all other i c (11 U I2). In view of condition (b) of the

present lemma, we must have in fact 1z. 0 1<I and # c I.. We

move the variables zi for i c I1 from their initial locations

zi - zi0 on Izi 0  - 1 along continuous curves ri lying in the
respective unit disc Izil 1 1 and leading up to the terminal

points zi - a,, while the variables zi for i c 12, i # p are

held frozen at their corresponding values zi - z iO* The

variable z 0 can then trace out a contour r in the z -plane

so that f(z) - 0 is satisfied. Note first that as long as zi
is on ri for all i c I1 and zi - zi0 for i c 2 \(#), the
polynomial f(z) cannot be zero for all z 0 because otherwise

An arbitrary choice of z on z'1 - 1 yields a value of the

k-tuple z with Izil < 1 for i c I1 and Izil - 1 for i c12

such that f(z) - 0, which contradicts condition (b) of the

present lemma. However, with this alternative excluded, it

would be possible, due to condition (a) and the continuity

argument, to arrive at the same unpermitted situation in a

way in which z reaches a point with Iz #-1 by moving

continuously along r while the zi , for i c l1 , remain on

their respective ri -

Remark: If k-2 and Ii-(l) and I2-(2) then lemma 2.3 coincides

with a result well known (see e.g., (2) and (13b)) in the

literature.

Corollary 2.3.1: Let f(z) be a polynomial in z "

(alZ2,...,Zk). Then f(z) # 0 for I.1 1 1 if and only if the

following two conditions hold true simultaneously:

(a) f(az 2 ,z3,...,zk) $ 0 for Izil S 1, i - 2 to k, where a

is some complex number with lal S 1.

(b) f(zl,Iz2 ... zk) 0 for 1z1  I, and !: - 1, i-2 to k.

Proof: Follows from lemma 2.3 via the choice of I - (1) and

*-a-..-.e -W --



12 - (2,3,...k).

The proof of the theorem due to Anderson and Jury (161

mentioned earlier is given next.

Theorem 2.4: If f(z) is a polynomial in z " (ZlZ'...OZk)

then f(z) # 0 in I11 S 1 if and only if for some complex

number a with lalil the following conditions simultaneously

hold true:

(1) f(z) # 0 for 1zl S 1, and Iz1 - 1, j -2 to k.
(2) f(z) r 0 for z1 - a, Iz21 1, and IzI - 1, J -

3 to k.

(3) f(z) # 0 for z - a, i - 1,2, 1z3 1 S 1, and Iz.i -

1, j- 4 to k.

(k) f(z) # 0 for zi  - a, i - 1 to (k-1), Izk .

Proof: Necessity is obvious. To prove sufficiency, let us
define the n-variable (1 < n I k) polynomial Bn from f(z) by
freezing each of the first (k-n) variables equal to a, i.e.,

z - a for i - i to (k-n). Note that Bk - f(z) and B1 -

Bl(zk) - f(a,...,a,zk). We first claim that Bn * 0 in Izi <
I, for i - (k-n+l) to k for each n in 1 < n < k. The proof of
this assertion is via induction on n.

Obviously, due to condition (k) of the theorem, B1 - Bl(zk)

0 in IZk1 < 1. The assertion is, therefore, true for n - 1.

Assume now that our assertion is correct for B i.e., B

an(z k-nl,...zk) # 0 for Izil S 1, i - (k-n l) to k. Note

that this implies B nl(a,zkfn+ll...Izk) - Bn(zk-n+l,...,zk)

0 for Izil 1, i - (k-n+l) to k. However, ccndition (k-n) of

the theorem states that Bn+l (Zk-n,**,Zk) Y 0 for IZk-ni 1
and Izij 1, i - (k-n+l) to k. The last two conditions, in
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view of corollary 2.3.1, imply that ,'l 0 forIz1I S 1, i

(k-n) to k. The proof of the theorem by induction is.thus

complete.



2.4. Proof of a theorem of DeCarlo, Murray, and Saeks [7) and

its extension

In this section we undertake the proof of the theorem of

DeCarlo,et.al. [71 based on continuity property of zeros of

polynomials. We note that this theorem is riot mentioned by

Srintzis [6], and its proof in (7) makes use of homotopy
theoretic arguments. Subsequently it was pointed out [1,101

that the result can be considered to be a special case of

Rudin's theorem (91. We will need to have the following lemma

as a preperation for our proof of the theorem.

Lemma 2.5: Let f(z) be a polynomial in z - (Z ,Z2,...,zk)

such that f(z) # 0 for 1.i - 1, and the set of indices i - 1

to k be the union of disjoint subsets of indices I , 12 and
13. If f(z) # 0 in Izi l S 1 for i c I1,  Izil - 1 for i E 121

and z - 2i , for i c 13, where the yi's are some complex
numbers such that 1rii - 1, then we also have f(z) $ 0 in
Izil S 1 for i c I,; Izil - 1 for i c I , and zi - 7i for

i c I , where j is any integer belonging to 13 I, - 12 U

(j), and I -1 3\(J}.
Note that the lemma is meaningful only if 13 is nonempty and

that we may also assume I1 to be nonempty since otherwise the
result is trivial. However, 12 may be empty.

Proof: Let it be assumed for the purpose of contradiction,
that f(zo) - 0, where z0 - (zlO'z2O'...zkO) is such that
Iziol S 1 for i c Il, Ziol 1 for i c Ii, and zio - i for

i C I . In view of Lemma 2.1 and the fact that f(z) $ 0 for
I!f - I we may assume that for one of the i c I, say for i -

, we have 1z,01<1 and that IzioI - 1 for all i e I, where

xi - 11\(p.-

Consider the polynomial f1(z Mzj) obtained by freezing in
f(z) the rest of the variables as follows: z - Zio for i c

Iand zi "i for i 1'. Clearly, f(z, zo) 0,
.i 12 an 'U fo j 0 jO

-17- V
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but by the hypothesis of the lemma we have fl(z ,zj) f 0 for

Iz l S 1, Zjm M j as well as for 1z t-zj l-1. Consider then

a directed arc r. of the circle jzjJ - 1 originating from zj
- zj0 and terminating at zj - yj. Obviously, for any fixed

zj c r the polynomial fl(Z ,z.) cannot be zero for all z

because otherwise a contradiction with the fact that f(z)

0 in I!i - 1 would immediately be arrived at by choosing zu
8o be arbitrarily located on jz I - 1. By invoking the

continuity argument we can thus move z. continuously on rj

from z towards 7j and simultaneously move zN continuously

from zN0 such that fl(z,zj) - 0 remains satisfied. We will

then reach a situation either with z ] - 1:II - 1 or in

which 1zNP I S, z - 7ji which both have been seen to be

impossible.

The following result is immediately obtained by repeated

application of Lemma 2.5.

Lemma 2.6: Let f(z) be a polynomial in z - (zl,z2,...,z k )

such that f(z) # 0 for [Iz - 1, and the set of indi es i - 1

to k be the disjoint union of two subsets 11 and 12. Then if

f(z) # 0 in Izil S 1 for iI 1 and zi - yi for idI2 where the

Yi's are some complex numbers such that lyil - 1, then f(z) s

0 in Izil S I for i c Il, and Izil - 1 for iI 2.

Note again that the set result is trivial if I1 is empty.

Lemma 2.7: The transformation

Z1 - (u-v)/(l-v u), Z2 - (u+v)/(lv*u) (2.3a,b)

has the following properties:

Property 2.1: If v - 0 then zI - Z2 - U.

Property 2.2: If Jul 1 1 and v is such that v v .I/u, then

Iz21 - lz2 1 - 1.
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Property 2.3: If lul < 1 and lvi < 1, then Izll<l and lz21<l.

Property 2.4: For any zi and z2 with 1lzl<l and iz21<l there

exist u and v with Jul < 1, lvi < 1 such that (2.3) is

satisfied. (Note: (2.3) does not represent a simple

one-to-one transformation, but Property 2.4 is in a sense the

converse of Property 2.3.)

Proof: Properties 2.1 and 2.2 are easily verified. For

proving Property 2.3, consider any fixed v in lvi < 1. Then

zI is an analytic function of u in the domain Jul S 1.

Furthermore, from property 2.2, Jz11 - 1 for all u on the

boundary lul - 1 of the domain Jul 1. Thus, maximum modulus

theorem implies that zll < 1 for lul < 1. Similar arguments

hold for z2.

For proving Property 2.4, note first that if zI - z2 then the

proof immediately follows by choosing u -zI - z2 and v - 0.

Henceforth z1#Z2 will be assumed. By eliminating u from

(2.3a) and (2.3b) it follows that:

(l-1vI)2/21vI-(zl+exp(j ))(z2exp(-jcl)-l)/(z-z 2 ) (2.4)

where v-lviexp(ja).

We next claim that by choosing a properly the right hand side

of (2.4) can be made to be equal to a finite real and A

positive number. To substantiate this claim consider the

angle y defined by (zl.exp(ja))(z 2exp(-jc)-l)= Iclexp(jr). .

Since 1zl1 < 1 and 1z21 < 1, it is obvious that Icl # 0, and

Y is thus well defined. Furthermore, y satisfies (2.5).

exp(2jy) - [(&+z /(l+z 1 Ul[( -z 2)/(l-z 2 U) (2.5)

where F - exp(ja)

Since the right hand side of (2.5) is the product of two

1 .9
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allpass functions of the variable & it is well known that as

a increases continuously by 2n, the angle associated with

each of the two factors also increases continuously by an

amount 2n. Consequently, y then also increases continuously

by an amount 2n, i.e., by proper choice of a,y can be given

any arbitrary value. The proof of our claim then follows

from the fact that y is the angle associated with the

numerator of the right hand side of (2.4), and that the

corresponding denominator depends only on the given

quantities z1 and z2. By solving (2.4) for JvJ it then

easily follows that one of the two solutions satisfies

O<Ivi<l.

Finally, since (2.6) follows from (2.3), by using arguments

similar to

u - (z1 +V)/(l+v *z1 ) - (z2 -v)/(l-v*z 2 ) (2.6)

those used in the proof of property 2.3, it follows that Ivi

< 1 together with either Jzlj < 1 or Iz21 < 1, implies that

lul < 1.

We prove the theorem due to DeCarlo et. al. (7) next.

Theorem 2.7: Let f(z) be a polynomial in z - (zlZ2,...,Zk).

Then f(z) # 0 in JI C 1 if and only if the following

conditions hold true simultaneously:

(a) f(z) # 0 in I1 - 1

(b) f(z) # 0 in 1z S 1, where zi - z for each i-I to k

First proof of Theorem 2.7:
We first provide a particlarly simple proof of theorem 2.7

for the two-variable case i.e., when k-2. Subsequently, it

will be shown via induction on k that if the theorem is true

for k-2, then it is true for any k. For all this, no use will

be made of the results ootained in Section 2.3.

-20-



Only sufficiency needs to be proved, the necessity being

obvious.

(i) k-2.

Consider the function h(u,v) in (2.7) obtained from f(z1 lz 2 )

via the transformation (2.3), where n1 , and n2 are degrees of

f(zl#z 2 ) in zI and z2 respectively.

u)n n)(27
1 * n2h(u,v) - (1-v (l+v U) f(zlz 2 ) (2.7)

The function h(u,v) is not a polynomial in u and v, but may

be considered as a polynomial in u whose coefficients are

polynomials in v and v . The coefficients just mentioned are,

therefore, continuous functions of v.

Property 2.1 of Lemma 2.7 along with condition (b) of theorem

2.7 then yields: i

h(u,O)- f(u,u)# 0 for Jul < 1 (2.8)

Furthermore, it follows from property 2.2 and condition (a)

of tneorem 2.7 that:

h(u,v) # 0 for lul - 1, Ivi < 1 (2.9)

We next claim that condition (2.8) and (2.9) imply that

h(u,v) # 0 for lul < 1 and lvl < 1. To show this we assume

for contradiction that h(u0 ,v0 ) - 0 with lu0  ( 1, Iv0 l < 1.

Consider a continuous directed arc r in the complex v-plane
originating from v-v0 and terminating in v-0. For any fixed v

on rv, h(u,v) cannot be zero for all u because otherwise a

contradiction with (2.9) would be arrived at by choosing u to

be arbitrarily located on Jul-l. Furthermore, since as v

describes r., u describes a continuous path in the u-plane, r

it follows from (2.8), by invoking the continuity argument,

that there must exist a v-v6 on rv and a corresponding u-u6 %

-21-
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with Iul-1 such that h(u6 ,v)-O, which again contradicts

(2.9), thus proving the claim that h(u,v)#0 in lul< l,lvl<l.

If f(zl,z 2 )-0 for some z 1 -Z0 and z2-z2 0 in lzll < 1 and 1z21
< 1, then it folLows that from (2.7) and property 2.4 of

Lemma 2.7 that there exists u0 and v0 in lul < 1 and lvi < 1

such that h(u0 1v0)-O, which however contradicts the

conclusions of the last paragraph. Thus f(z Vz 2 )#0 in lzll <

1, lZ21 < ".

It only remains to show that f(zl,Z 2),'0 if one of the two

variables z and z2 is strictly inside and the other on the

corresponding unit circle. Assume e.g., f(z 0 ,z20 )-0 for

1z10 1-1,1z 20 1 < 1. Then f(zl 0 ;z2 ) cannot be zero for all z2
because otherwise an arbitrary choice of z2 on 1z2 1-1 would

violate condition (a) of theorem (2.8). The continuity

property of zeros then implies that by moving the variable z

from z1-Z1 0 to inside the unit circle by an arbitrarily small

amount it would be possible to construct a zero of f(zl1 Z2 )

in zl11 < l,lz 2 [ < 1, the impossibility of which has been
demonstrated in the previous paragraph.

(ii) k > 2.

Assume for the purpose of induction that the theorem is true

for (k-i) variables, with k > 2, and consider the polynomial
fl(ZZk) of two variables zlz 2 defined as fl(zzk) -

f(z,....Zk). Then it obviously follows from condition (a) of
Theorem 2.7 that fl(ZZk)# 0 for Izi - 1 and Izkl - 1,

whereas condition (b) implies that f1 (z,z)#0 for Izl < 1. The

last two conditions, due to the proof already given for case

(i), imply that fl(ZZk)#0 for Izi 1 and lzk l < 1. In

particular, fl(z,zk)-f(z,...ZZk)0 for Izl-l and I=kl 1.
The latter conclusion along with condition (a) and Lemma 2.6

imply that f(zl,z2 ,...zk)#O for Izil-1, i-i to (k-1) and Ik

< 1.

-22-



Consider next the (k-1) variable polynomial defined as

f2 (zl, 2,....zkl) - f(zlz2,...Zk-l,Zko), where ZkO is any

fixed complex number in tzkI S 1. It then follows that

f2 (z,z,...z) $ 0 for IzI S 1, because otherwise fl(Z,Zk0) -

f(z,....ZZk0 would have a zero in fzj 1, the impossibility

of which has already been demonstrated. Furthermore, from the

concluding sentence of the last paragraph it follows that

f2(zljz2,...Zk-l)# for Izil-1, i-1 to (k-i). Therefore, by

invoking the induction hypothesis we can assert that

f2(zlz2,...Zk-l) #0 in Izil 51, i-1 to (k-i), which in view

of the fact that Zk0 is arbitrarily located in 'ZkI 1, in

turn implies that f(z)#O for 1:1 S 1.

Corollary 2.7.1: The polynomial f(z) in z - (Zlz2,...Zk) is

devoid of zeros in Il S I if and only if the following

conditions simultaneously hold true:

(a) f(z) # 0 for Iii

(b) f(.(z)) o 0 in IzIlS , where q(z)=(gl(z)'92(z) " . gk(z)),

and each gi(z), for i - I to k are functions which are

analytic in IzIlS with the further property that they map

unit circles into unit circles and unit discs into unit

discs.

Proof: Let us note that any function gi(z) which maps unit

disc into unit disc, unit circle into unit circle, and is

also analytic in IzISl is a rational function which can be

written [19, p.121 as in (2.10), where the constants yi and

aMi satisfy IYil-i, laiV(<.

zi-g i(ui)-yi A (ui-Oi)/(1-iv ui ,i >1 (2.10)

Furthermore, we also have that:

Ig(u )H < 1 for lu -I l (2.11) i
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Consider the polynomial g(u) in um(ulUlZ,... uk), defined as

in (2.12), where n 1 is the partial degree of t(z) inz

k v* *
h(u)-f(z) a aI (l-CL. U) (2.12)

i-1l

Due to condition (b) of the present theorem it then follows

that h(u)oO in imrsl, where each uim o in ok
Furthermore, it follows from equation (2.11) and condition

(a) of the present theorem that h(u)o0 for IuI-1. Invoking

theorem 2.7 it then follows that h(u)o0 in lIIS1.

Next, consider any E-(zl#Z2,.*.Zk) with IzlIS1. For each

corresponding :i we can compute a ui by means of equation

(2.10) i.e., by solving an algebraic equation of degree v.>0.
1

Hence, we can find a u-(ul,U,u ...U ) such that (2.10) is
satisfied, and due to (2.11), we then have 1!!ISl. Hence, it
follows from (2.12) that f(z)o0 for IzKI1.

Remark: We note that Theorem 2.7 is a special case of

Corollary 2.7.1 when the choice gj(z) - z for all i - 1 to k
is made.

The following multidimensional (k>2) versions of results

stated in [O] and (11, respectively, follow immediately from

Corollary 2.7.1.

Corollary 2.7.2: if f(z) is a polynomial in z M (21,l

z . 2)then f~s) 0 in Ii 1 if and only if the
following conditions simultaneously hold true:

(a) f(z) # 0 in J:1 - 1 P
(b) f(z) p0 in 121 S 1 with z. a C iz ,i -1 to k

where the ci s are some unimodular constants (i.e., Icil IM

1), and the pi 's are some positive integers (i.e., p1 > 0).

Corollary 2.7.3: Let f(z) be a polynomial in z -
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(ziz 2,...,Zk). Then f(z) # 0 in Izl S 1 if and only if f(z)

# 0 for IzI S 1 with zi - z exp (ji6), i - 1 to k, where the

Oils are arbitrary real numbers.

Remark: An alternative proof of theorem 2.7, which heavily

makes use of the results developed earlier in this report,

but does not necessitate .the technique of induction on the

number of variables, can be formulated along lines explained

later. We first consider the following theorem.

Theorem 2.8: Let f(z) be a polynomial in z - (zl,z 2 ,...Zk).

Then f(z) 0 0 in 1:1 1 if and only if the following

conditions simultaneously hold true:

(a) f(.R) 0 in Iz1-1

(b) f(z) s 0 for zj - a, and Izil 1 for i # j

where a is some complex constant such that lal S 1 and where

j is some integer 1 < j < k.

(c) f(z) * 0 if Iz .I 1 and zi - Yi for the indices i $ j,

where the i's are some complex numbers such that Jyij - 1.

Proof: Necessity of the theorem is obvious. To prove

sufficiency we first note that no loss of generality occurs

if we assume j - 1. In view of Lemma 2.6, with 11 - (1),

conditions (a) and (c) of the theorem together imply that

f(z) $ 0 -if z1 1 5 1 and Izil - 1 for i - 2 to k. However,

this latter conclusion along with condition (b) of the

theorem, due to Corollary 2.3.1, implies that f(z) # 0 in I:1

< 1.

Second proof of Theorem 2.7:

Consider a polynomial g(u) in u - (ul,u 2 ,...,uk) obtained by

making in the polynomial f(z) the substitutions: z k - u k and

zi - uiuk for each i - 1 to (k-i). Conditions (2.13),(2.14)

then immediately follow from condition (b) of Theorem 2.7,
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whereas (2.15) follows from condition (a) of Theorem 2.7 and

the fact that 11!1-1 implies Izi-1.

for all finite u1 , i-i to k-i (2.13)

g~*..'l'k)- flukr...uk) jo 0 for IV 1 (2.14)

$~ t.. u)j 0 for 11ul - 1 (2.15)

invoking Theorem 2.8 on g(u), with j-k, a-0, and y 1l, inj to

k-1, it then follows from (2.13), (2.14), and (2.15) that

g(u) #' 0 for 1!!l < 1.

We next note that j1i, thus f(z)-g(u)#0, if any of the

following conditions hold: (a) 1z115.l and 1zIl-1 for 1-2 to

k, (b) z 1-O for i-I. to J-l, Iz.I Jl, and Izi1-1 for imjs~l to

k, where j is any integer such that 2<jik-l, (c) z1-O for i-i
to k-i and IzkI<1. Hence, due to Theorem 2.4, f(z) # '3 for

11 1, thus providing an alternative proof of Theorem 2.7.
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2.5. Proof of Rudin's theorem and an Extension of Rudin's

Theorem

In this section we undertake the proof of Rudin's theorem

using continuity argument. A generalization of Rudin's

theorem is also reported. Our proof of Rudin's theorem is

based entirely on continuity arguments and an application of

Corollary 2.7.2. Proofs previously reported in the literature
have been obtained by appealing to homotopy theory (9]. Our

extension of Rudin's theorem is a further generalization of

the results discussed in 1171 and involves a simple

application of our lemma 2.3 and lemma 2.6, along with the
Rudin's theorem itself, we first state and prove the

conventional form of Rudin's theorem for covenience of

exposition.

Theorem 2.9 (Rudin (11,191): The polynomial f(z) in z -

(ZlZ2,...zk ) is devoid of zeros in 1Si 1 1 if and only if
the following conditions simultaneously hold true:

(a) f(z) * 0 for 121 = 1
(b) f(q(z)) 0 0 in Izi 1, where j(z) -

(gl(z),g 2 (z),...gk(z)), and each gi(z), for i - 1 to k are

continuous functions of z with nonnegative winding

numbers with respect to the origin with the further property

that they map unit circles into unit circles, and unit discs

into unit discs.

Note that this theorem reduces to corollary 2.7.1 if the

gi(z)'s are assumed to be analytic in Izl<l; indeed this

added assumption ensures that gi(z)'s are all-pass functions

(i.e., unit functions [191). A proof such as in (101,

however, is not fully correct because of the fact that if the

functions gi(z) are merely continuous the principle of

argument may not be invoked. An approach modified wherever

required will therefore be used.
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Proof: Necessity is obvious. To prove sufficiency, Let C
gi~),and pi a 0 bv the winding number of gj(z) with respect

to the origin for all i - 1 to k. Also, let r0and rF1 be the
contours described in the complex plane Oefined rospectively

by the functions f(clz 1 ,c~z 20...C k zk ) and

f(g,(z)'92 (z) ....gk(z)). as the variable z describes the unit
circle z - exp(JQ) beginning from 8 - 0 and ending in 8 - 2
in the anticlockwise direction. Clearly, r0 and rlare closed
contours lying in the finite complex plane, each with the
same initial and terminal points at t(cl,c2 , ... ck).

We first claim that the number of encirclements of the origin
of the complex plane by the contours r0and r 1 are the same.
To prove this assertion we define the functions *.(G) for 0 <
* S 2x as: * - arg(gi(exp(JO)) for each i - 1 to k. Note
that since each gi(a) is a continuous mapping of the unit
circle into the unit circle, *i M)'s are continous
functions of 0, and we can also write:

gi(exp(j9)) - exp(jr~i(G)) for i1 1 to k (2.16)

in particular, we have (2.17a), whereas (2.17b) follows from
the fact that the winding number of gi(z) with respect to the
origin is pi for each i - I to k. Consider next a complex
valued function h~t,9) defined for 0 < t S 1, 0 < e 2n as
in (2.18), where the *i(G)'s in (2.18) are as defined in
(2.19).

c i -gi(l) - exp(ji(O))h *1(2m) - 2npi + *1(0) (2.17a,b)

h(t,e) - f(1e12e .. #~) (2.18)

#(0) -exp (jt*. *~e j(l-t)(*.i( 0) +PeO)) (2.19)
for each i - I to k.
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Subtituting t-1 in (2.19) and subsequently making use of

(2.18) and (2.19) we have h(1,9) - f4gl(z),g 2 (z),...gk(z))

with z - exp(je). Similarly, Ly substituting t - 0 in (2.19)

and subsequently makino use of (2.18) (2.19) and (2.17a) we

obtain h(0,e) f(c1 z ,c2 z ,... Ckz ) with z - exp(je).

Also, it follows from (2.17),(2.18) and (2.19) that h(t,O) -

h(t,2x) - f(cl,c 2 ,...ck) for all t in 0 S t < 1. Furthermore,

since the .i(e),s are continuous functions of 8, and f(z) is

a polynomial and hence a continuous function of z -

(zlz2,...Zk), it follows in view of (2.18) and (2.19) that

h(t,O) is a continous function of t and G. The function

h(t,e), when viewed as a function of 0 only, can therefore be

thought of as representing a family of closed contours with

their initial and terminal points fixed at f(cl,c 2 ,...ck),
which are continously parametrized by the variable t in such

a way that we obtain r0 when t - 0 and F when t - 1. In
addition, since it follows from (2.19) that 1+1i(G) - 1 for
each i, we have from condition (a) of the present theorem

that h(t,e) * 0 for all 0 < t < 1, 0 S e < 2n. Therefore, the

function h(t,8) can be taken to represent a continuous

deformation of the contour r0 into r1 with the initial and

terminal points fixed at f(cl,c2....ck) such that at any
intermediate stage of the continous deformation process the

contour may never pass through the origin (O,jO) of the

complex plane. It, therefore, follows that the number of

encirclements of the origin (O,JO) by r0 and r1 are the

same. 1

Next, by using arguments similar to the one used above we
show that the number of encirclements of the origin by the

1 This intuitive notion is more formally expressed by saying
that if r and r are -homotopy of each other then they are

9-homologous (theorem 13.15 in 1181). Here, 9 is the set of

all complex numbers except the origin (O,jO).
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contour r1 is zero. Consider the family of circles described

by the complex function k(r,s) of real variables r,s c (0,11

defined as k(r,s)-rexp(2njs). Also, consider the function

K(r,s) M f(g(k(r,s))). Then K(l,s) describes F1  and

K(0,s)-f(g(O)) for all s. Thus, if r changes from 1 to 0, the

contour r described by K(r,s) for s c (0,11 contracts

continuously from r into the point f(g(O))00. Hence the

number of encirclements of the origin must be zero for r
sufficiently close to 0, and it must therefore be equal to

zero also for r-l, because due to condition (b) of the

present theorem r never goes through the origin for r e

(0,11. 2

Thus the number of encirclement of the origin by the contour

r0  is zero. Since r0 is the image of the unit circle IzI-l

due to the lapping defined by the function

f(cl P1,z P2,...c z k), it follows by using the principle of
flcz ,c2z .. kz p1  P2 k

argument that f(c1 z ,c2 z ,...ckZ ) z 0 in Izl 1. Since

pi 0, and from (2.17a) we have that Icil - Igi(1)I - 1 this

latter statement along with condition (a), due to Corollary

2.7.2, completes the proof the present theorem.

Before we can undertake the proof of the extended version of

Rudin's theorem reported in (171, we need the following

lemma.

Lemma 2.8: Let f(z) be a polynomial in z - (Zlz 2 ,...zk) such

that f(z) # 0 in JzJ - 1. Also, let the indices i - 1 to k be

the union of disjoint sets of indices il' J2 and J3 If f(z)

satisfies: (a) f(z) o 0 for Izil S 1, i € J1; Zi " Mi£ i C

(J2  U J3), and (b) f(z) * 0 for all z with zi - i for i c

J1 zi - gi(z) for i c-J2 and Izl l, and zi - Yi for i c J3 '
where the gi(z)'s are functions satisfying the same

2This step does not indeed follow from the principle of

argument.
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conditions as those in Rudin's theorem, and the ai , 01 i,i's

are some complex numbers such that Jail - 1yil -1 and 10i

1, then f(z) s 0 for Izil 1, i £ U J2); zi - yi' i C

J3

Proof: Since f(z) # 0 in 1:1 - 1, invoking Lemma 2.6 along

with condition (a) of the present lemma yields that:

f(z)*0 for IziKl, ieJl; tzil-l, iC(J 2 U j3 ) (2.20)

Condition (2.20) implies, in particular, that f(z) # 0 for z.
M Oi' i C 31; Izil - 1, i C J2 and zi - i i C J3' which

along with condition (b), due to Rudin's theorem, implies

that f(z) # 0 for zi - 0i. i E Jl, Izil < 1, i E J2 and zi -

7i ,  i C J3. This latter conclusion, along with a

particularization of (2.20) via the choice of zi - 7i , i C

J33 due to Lemma 2.3, yields the desired result.

We can now prove the generalized version of Rudin's theorem

stated as follows.

Theorem 2.11: Let the set of indices i - 1 to k be the union

of n disjoint subsets of indices ij, J - 1,2,...n. Then the

polynomial f(z) in z - (zIZ2,..zk) is devoid of zeros in JzJ

< 1 if and only if the following hold true simultaneously:

(a) f(z) # 0 in I£1 - 1

(b) for each p, u - 1,2,...n, the polynomials obtained by
setting zi  - :i' i C i, j - 1 to (u-i); zi  - gi (z), i £ I

and zi - yiO' i C I, j - (u+l) to n in f(z) are devoid of

zeros in Izi 1, where the giM(z)'s are functions satisfying

the same constraints as those satisfied by the gi(z)'s in

Rudin's theorem, and the 0i 's and yi Is are some complex
numbers such that 10.iw < 1 and 1i~. - 1.
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Proof: Only sufficiency needs to be proved. We claim that for

all m in 1 < m < n the polynomial Bm obtained by freezing zi

a& z - yzim i C U I. satisfies Bm * 0 in Izil 1, i £

U I. The proolm ' this assertion is via induction on w.
khce B is obtained from f(z) by setting zi " Yii, i T U

I and Jyiij - 1, it follows from condition (a) that B1 N

for Izil - 1, i c I,. Furthermore, condition (b) with # - 1

implies that B1 * 0 in Izi 1 with zi - gil(z), i C II. The

last two conditions, in view of Rudin's theorem, prove that

B1  * 0 in Izil < 1, i c I,. Therefore, our assertion is true

for m - 1. We next assume that the assertion is true far m,

with 1 < m < n-1A  i.e., f(z) * 0 for Izil 1, i C U I.

and zi - yi, i £ U I. Applying Lemma 2.8 on f(z) 4 ,0h
j-m+l 

-
m n

- U lj, J2  Im+l' J3 3 U I along with condition

(a) andJZndition (b) of the pre t lemma, with p ;+1, it

directly followa that f(z) 0 0 in Izil < 1 for i £ U 1j; zi

- Yi,ml; i C U I. Therefore, Bm+l # 0 in Jzij~ll,
j-m+2 j'1

3 1
i U I. The proof of our assertion via the induction is

thus c~m lete. The theorem then follows by noting that Bn and

f(z) are identical in all the variables zi, i - 1 to k.

Remark: We note that Rudin's theorem is a special case of

Theorem 2.11 when n-l. Also if 0i i. for all # then we

obtain the extension of Rudin's theorem reported in (17]. In

this sense Theorem 2.11 can be considered as a slightly

generalized version than that reported in (171.

As a corollary to the above theorem, we have the following

result reported in 1201.

Corollary 2.11.1: The polynomial f(z) in z - (Zl,Z 2 ,...zk) is

devoid of zeros in Iz 1 . if and only if the following hold

true simultaneously.

(a) f(z) * 0 in lzi - 1
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(b) 'for each /, 1 l,2....k, the polynomials obtained by I
setting zi - i Oi, i to (u-1), zi - z, i - u, and zi - Yi'

i - (Ai+l) to k in f(z) are devoid of zeros in 121 < 1, where

Oi'S and yi's are some constants such that iI 1 and

IYjI 1

Proof: The proof of the above corollary clearly follows from

Theorem 2.11 by choosing n - k, Ij - (j} for j - 1,2,...k,
01,,-01 and gi P(z) - z for each i and w

Remark: It is possible to formulate a more direct proof of

Corollary 2.11.1 without making use of the Rudin's theorem

via the use of Lemma 2.3, Lemma 2.6 and a strategy similar to

the one adopted for the proof of Theorem 2.11. However, the

details of such a proof is omitted from the present

discussion for the sake of brevity.

Also note that if ai - 0 for all i, and Yi. - I for all i and

# then Corollary 2.11.1 coincides with a result stated and

proved in Theorem 2.4 in [7].
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2.6. Conclusion

A correct formulation of the continuity property of zeros of

a multivariable polynomial as a function of its coefficients

has been discussed. This property has been used to derive all

the conditions for a polynomial f(z) in z - (zl,z 2,...,zk) to

be devoid of zeros in izi 1 previously known in the

literature. The proofs presented here are believed to be

simple, rigorous and more intuitive than those published

earlier. The present report deals with results arising from

studies of bounded-input-bounded-output property of

multidimensional discrete time systems only. It is well known

[1,101 that unlike in'one-dimension, the obvious continuous

domain analogs of certain discrete time domain results do not

hold true unless proper modifications necessitated by the

non-compactness of the right half polydomain are duely made.

The proofs of these results in the multidimensional (k>2)

context based on the continuity property of the zeros of a

polynomial as a function of its coefficients can also be

worked out along lines similar to those discussed here. This

discussion will be the content of a forthcomming report [211.
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CHAPTER 3

NEW RESULTS ON STABLE MULTIDIMENSIONAL POLYNOMIALS

3.1. Introduction

Recent studies on the scattering parameter description of

passive multidimensional systems have given rise to a new

class of multidimensional Hurwitz polynomials, called

scattering Hurwitz polynomials, by allowing zeros of

restricted nature to occur on the boundary of the domain

under consideration (11. Originally, two different

definitions of these polynomials were introduced, the

equivalence of which has been demonstrated via an extension

of the maximum modulus theorem for analytic functions of

several complex variables (21, and some of their properties

have been discussed in (31. Nontrivial properties of

scattering Hurwitz polynomials occuring in discrete time

domain applications are considered in (41 and their testing

procedures are elaborated in the two-dimensional context in

(51. An alternative approach to deriving the basic

properties of scattering Hurwitz polynomials has also been

offered [61. The present report, however, will be organized

such that all proofs are complete without requiring any

knowledge of (6).

The aforementioned investigation is carried further in the

present report by classifying a wider variety of

multidimensional polynomials occurring in transfer function

descriptions of passive systems. Whereas the scattering

Hurwitz polynomials occur as the denominators of bounded

functions, reactance Hurwitz and immittance Hurwitz

polynomials, as defined later, are characterized as the

denominators (and hence the numerators) of reactance

functions and immittance functions respectively. Related

other results on properties of multidimensional polynomials
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and rational functions are discussed in this context. Some

related investigations in [71 have been brought to the
attention of the authors.

Notations, terminologies and definitions and some general

properties of multivariable polynomials to be used in the
rest of the report are introduced in Section 3.2. Properties
of widest-sense Hurwitz polynomials and self-paraconjugate

Hurwitz polynomials are discussed in Section 3.3. Properties

of scattering Hurwitz polynomials previously unpublished in

the literature are discussed in Section 3.4. Section 3.5
deals with properties of positive functions, whereas the

reactance Hurwitz and immittance Hurwitz polynomials are
defined and their properties studied in Sections 3.6 and 3.7

respectively. In Section 3.8 a few results potentially

useful for testing the positivity property of
multidimensional rational functions are derived. A
nontrivial result concerning the property of nonnegativity of

the real part of a rational function, analytic in the right

half-polyplane, in terms of the behavior of the function on
the distinguished boundary of the domain of holomorphy is to
be noted in this connection. Finally results obtained are

summarized, and conclusions are drawn in Section 3.9.
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3.2. Notation, terminology, definitions and general

properties of multivariable polynomials.

The following is a partial glossary of notations and

terminologies to be used in succeeding discussions.

A polynomial g in k variables PlP2,..Pk will be denoted

simply by g or g(PlIP2,...Pk) or by g(2), where 2 denotes the

k-tuple of variables p - (PlP2, .Pk)- We will also write g
M g(R) or g - g(Pl'P2,'.pk ) to indicate that g is a

polynomial in k-variables. We take for granted that a
polynomial g in k variables may be independent of one or more

of the variables pl'P2,..Pk. The k-variable polynomial g
will be said to involve a variable pi if the indeterminate pi

actually exists in at least one of the monomials composing

the polynomial g. if g - g(2) involves pi then the (k-l)
variable polynomials obtained by assigning arbitrary values

to pi cannot all be identical. A polynomial g - g(R) will be
called nonconstant if g involves at least one of the
variables PlP2'..Pk. The set of integers 1 to k will be
designated by I i.e., I - (1,2,...k). By ilpi2,...ik we
designate a permutation of the integers 1,2,...k. A

nonconstant factor of the form d4 where v is an integer > 2
is said to be a multiple factor, and a nonconstant factor

that is irreducible is called an irreducible factor.

If g - g(2) is written as a polynomial in pi, icl, as

ni
g- £ Ap i # (3.1)

where the coefficients A are polynomials in the remaining

variables, with An s 0, then ni is called the partial degree

of g in the variable pi and is to be denoted by degig. Two
polynomials will be said to be relatively prime if they do

not have a nonconstant common factor. The terms factor

coprime and proper factor are also to be used respectively
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for the terms relatively prime and nonconstant factor.

The asterisk *, when used as a superscript along with any

scalar expression (or a constant), will indicate complex

conjugation. The paraconjugate of a polynomial (also of a

rational function) g is defined as: g, - g,(p) -

g *(-p,-P2,*..0.-p) A polynomial g is said to be self-

paraconjugate if g*- Cg, where C is a constant (necessarily

unimodular, i.e., ICI-I). g is said to be paraeven or

paraodd if C - 1 or C - -1 respectively. Sometimes it will

be appropriate to write the k-tuples 2 as: 2 - (Pl,2 ') ,

where 2' indicates the (k-l)-tuple 2' -(P2,P3,'.'Pk)-

Correspondingly we will also write: g - g (pl,2'). A

polynomial f in the variables P2,P3I...Pk will be expressed

as f - f(P2,P3,...Pk ) or equivalently as f - f(g'). For any

specific idI, we will use the phrase "(k-l)-variable

polynomial obtained by freezing the variable pi in g(2)" to

mean the (k-1) variable polynomial obtained from g(2) by

assigning a fixed value to pi. A second subscript to the

variables pi' 1 S 1 S k such as pi0, will usually mean a

fixed value of pi. Correspondingly the notations 20 -

(P10P20,..Pk0) and 20' - (P20P30,..Pk0) etc. will be

used. The notation Re2 > 0 (or Re2' > 0) will be taken to

mean Repi > 0 for all icI (or, ie(2,3,...,k)

correspondingly), etc. (all pi involved being obviously

assumed finite). The symbol w will be used exclusively for

designating real numbers. Thus, notations such as pi - Ji

and pi - Jwi0 imply that Repi - 0, Repi0 - 0 respectively.

Similarly w is used for the k-tuple of real numbers

(w1, 2,...l), i.e., 2 - j! implies Re2 - 0 etc. Wherever

appropriate, definitions and notations discussed so far also

apply if g is more generally a rational function in 2. The

notation I1. denotes any suitable norm, say, the Euclidean

norm, k

2 2.

11'11 - E PiI
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Let P be a set of k-tuples p - (plp2, ... POO where all pi

belong to the same number field K (hereafter always the field

of real numbers or the field of complex numbers). we will

say a certain property holds for almost all values if a

variable may be equal to any element of the field except,

possibly, finitely many of them. The set of all values that

the variable may then take is said to be almost complete.

The symbol 2 will be reserved to denote the set P when the

variables are restricted to be real.

Definition 3.2.1a: We say that P is a sequentially almost

complete set of order m > 1, with m I k, if there exists a

permutation ili 2 0...,ik of the integers 1,2,...,k such that

all 2 c P can be generated in the following way: There

exists an almost complete set K1cK such that any pi C K1 may

be chosen. For any choice thus made, assuming m _ 2, there

exists an almost complete set K2 cK (possibly depending on the

particular pi K1 selected) such that any pi t K2 may be
chosen. Again for any choice thus made, asiuming m > 3,

there exists an almost complete set K3cK (possibly depending

on the particular pi and pi selected) such that any pi c

K3 may be chosen, oic. If & - k this process is continaed

until we have reached Pi 

If m < k, once we havek reached ia there exists at least one

(k-m)-tuple (pi ... Pi ) (possibly depending on the
particular pi tom selected) that may be chosen. Finally,

we may exten& the aBove definition to the situation m - 0 by

saying that in this case the set P is not empty.

Definition 3.2.1b: P is sequentially infinite of order m,

1 S a S k, if it can be generated as in Definition 3.2.1a

except for replacing everywhere the term "almost complete

set" by the term "infinite set".

Note: In Definitions 3.2.1a and 3.2.1b, the permutation



(iloi2,...i k ) will be called the ordering of P. If i-p -1 to k, then P is said to be ordered naturally.

Definition 3.2.1c: P is sequentially exceeding n -

(012....nk) with order m, where m < k, if it can be

generated as in Definition 3.2.1a except that the terms anU

almost complete set KicK etc. are replaced by "a set KiCK

comprising at least ni + 1 elements" etc., the ni, i - 1 to

k, being finite, nonnegative integers.

An obvious interrelationship between the sets defined above

is also summarized in the following theorem.

Theorem 3.2.1: A sequentially almost complete set of order m

is also sequentially infinite of order m, and a set of the

latter type is sequentially exceeding ! - (nl,n2,...nk) with

order m, and this for any choice of the n.

Definition 3.2.1d: P is almost complete of order m, infinite

of order a, or exceeding n - (nl-n2,..nk ) with order m if

P - P1 x P2 x''Pk, the sets Pi , i - 1 to k, being non-empty

and such that at least a of them are almost complete,

infinite, or contain a number of elements larger than the

corresponding integer ni, respectively, where m < k.

Some properties of the type of sets just defined, as they
relate to the sets defined earlier in Definitions 3.2.1a,

3.2.1b and 3.2.1c are mentioned in the following.

Theorem 3.2.2: A set, P,of k-tuples, 2, that is

1. almost-complete of order m is sequentially

almost complete of order m,

2. infinite of order m is sequentially infinite of

order m,
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3. exceeding n-(nl,n 2 ,...nk) with order m is sequentially

exceeding n - (nln 2,...nk) with crder m.

Proofs of these results clearly follow from a close

examination of the definitions of the sets involved.

For the purpose of the present report we will also adopt the

followirg definitions. more definitions and terminologies

will be introduced as they occur in the main body of the

text.

D.finition 3.2.2: A polynomial g - g(2) is widest-sense

Hurwitz if g(p) * 0 for Re 2 > 0.

Definition 3.2.3: A polynomial g - g(2) is strict-sense

Hurwitz if g(p) # 0 for Re 2 "

Definition 3.2.4: A polynomial g - g(p) is scattering

Hurwitz if the following conditions simultaneously hold true:

(i) g(p) # 0 for Re 2 > 0, i.e., g is widest-sense

Hurwitz

(3.2)

(ii) g and g, are relatively prime polynomials.

(3.3)

Definition 3.2.5: A polynomial g - g(R) is a

self-paraconjugate Hurwitz polynomial if it is a widest-sense

Hurwitz polynomial and is self-paraconjugate.

Definition 3.2.6: A polynomial g - g(p) is reactance Hurwitz

if it can be written as a constant (possibly complex)

multiplied by the paraeven or paraodd part of a scattering

Hurwitz polynomial.
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Definition 3.2.7: An immittance Hurwitz polynomial is the
product of a scattering Hurwitz and a reactance Hurwitz

polynomial.

Definition 3.2.8: A function F(R) is called a positive

function if Re F(p) > 0 everywhere in Re p > 0, where F is

holomorphic.

The positive function F - jC, where C is a real constant is

said to be trivial. All other positive functions are non-

trivial.

Definition 3.2.9: A paraodd rational positive function is

called a reactance function.

Note that the Definitions 3.2.8 and 3.2.9 do not assume the

function under consideration to be a real function.

Theorem 3.2.3: If g(2) is a polynomial in k-variables such

that the set of zeros of g comprises a sequentially infinite

set of order k, then g is identically equal to zero. More

generally, let ni - degig , i - 1 to k. If g -0 for all

2 c P, where P is sequentially exceeding n -(nl,n2,...nk)

with order k, then g is identically equal to zero.

Proof: Assume that a set P of the type mentioned exists, but

that g , 0. We may assume P to be ordered naturally.

Consider g as a polynomial in p', the coefficients A (pl) of I

which are polynomials in p, only; the A. are of degree < nI .

Obviously, there exists a v' such that A , (pl) # 0. Hence,
among the values of p1 to be considered for forming P, there

must exist at least one, say pl0, with Av, (p10 ) 0 0. The

polynomial g1, defined by gl(2') - g(plo 1 ') is then not

identically zero.

Next, we proceed with g, as before with g i.e., consider g,

as a polynomial in (p3 ,P4 ,.. Pk) the coefficients B (p2 ) of
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which are polynomials in P2 etc.... Finally, we arrive at

g(20 ) ? 0 where p0 e P. This, however, is a contradiction.

Lemma 3.2.4: For any non-constant polynomial g, there exists

a sequentially almost complete set, P, of order (k-i) such

that g(P) - 0 for all p c P.

Proof: We may assume that g involves Pk" Freeze p1 at P1 0

and consider the polynomial g, defined by gl(p') - g(pl0 ,').

Since the coefficients of gl are polynomials in pI0 , there

are at most finitely many values of pl0 for which g,(p') is

independent of Pk' For any other choice of p10 we may apply

the same argument to g, as formerly to g, with P2 taking the

role of p1 etc. Finally, we find a polynomial gk-l(Pk) that

still involves Pk and thus has at least one zero.

Theorem 3.2.5: If f and g are polynomials in k variables

then f and g have a proper common factor if and only if the

set of zeros that are common to f and g is sequentially

infinite of order (k-1).

Proof: Necessity is obvious in view of Lemma 3.2.4. To

prove sufficiency, let P be the set mentioned in the

statement of the theorem and assume that p1 is the last

variable selected in forming P, i.e., in the terminology of

Definition 3.2.1a, that we have i k - 1. Let P' be the set of

(k-l)-tuples P' involved in forming P. There exist

polynomials u,v and w such that uf + vg - w, where w-w(p') is

a polynomial independent of pl' deg, u < deg, g and deg, v <

deg, f; a polynomial w thus defined has the property that w a

0 holds if and only if f and g have a common proper factor

involving p1  (8]. Furthermore, since P' is sequentially

infinite of order (k-l) it is clear from Theorem 3.2.3 that

w( 2 ') is actually identically zero, i.e., that f and g have

indeed a common factor.
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Lemma 3.2.6: Let g be a polynomial in R. Let us select one

of the pi, say pi, and let us freeze pi, at say, Pi'0 "

There exist at most finitely many choices of pi' 0 such that

any partial degree of g is lowered.

Proof: We may assume i' - 1. Write *g as a polynomial in p'

whose coefficients are polynomials in pl. Clearly, there are

at most finitely many values of pl0 such that the leading one

of these coefficients becomes zero.

Theorem 3.2.7: Let f and g be two relatively prime

polynomials. For any m such that 1 < m < k let us freeze m

of the variables pi, say for i - i1 to im , at corresponding

values Pi0" Let fl and g, be the resulting polynomials in

the remaining variables. Then there exists a sequentially

almost complete set Pm, of m-tuples of order m such that for

(P 'Pi P "'P 0  c Pm' the polynomials fl and g, are still

relAivei prime. Furthermore, for any ordering chosen there

exists a set Pm with the property given.

Proof: It is enough to prove the theorem for m - 1 and to

assume that the variable to be frozen is Pk Define u, v and

w as for the proof of Theorem 3.2.5, and let uI, vI and wI be

the polynomials resulting from the former set of polynomials

by freezing Pk at PkO Clearly, w is not identically zero,

and there are at most finitely many values of Pk0 for which

at least one of the relations deglf I < deglf, deglg I < deglg

(cf. Lemma 3.2.6) or wl(Pa,...Pkl) u 0 could hold. For all

other choices of Pk0 the conditions for ensuring that f1 and

9l have no common factor involving p, are fulfilled. In a

similar way one can show that there are at most finitely many

Pk0 for which f1 and g, have a common factor involving any of
the variables P2 to Pk-l"

Theorem 3.2.8: For any polynomial g that is not identically
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zero there exists a set, P, of k-tuples p, that is

sequentially almost complete of order k and such that g(p)#0

for peP. Furthermore, a set P with the given property exists

for any choice of the ordering of this set.

Proof: It is sufficient to assume natural ordering. Let g,

be the polynomial in p' obtained by freezing p1 at PI0, i.e.,

g1 (p') - g(pl0 ,P'). The coefficients of g, are polynomials

in P1 0. Hence, gl(p')*0 for almost all choices for p10 . For

any of these, we may apply the same argument to g, as before

to g except that P2 now plays the same role as p1 had etc.

Finally, we arrive at a polynomial gk-i that depends on Pk

alone and is not identically zero, which is thus different

from zero for almost all Pk"

Theorem 3.2.9: If a polynomial g is devoid of zeros in the

region Rep 0 as well as in the region Re2 < 0 then g is a

nonzero constant.

Proof: If g is not a constant let us assume that it

involves, say, the variable p1 . Let A be the leading

coefficient of g when writing it as a polynomial in pl;

clearly, A is a polynomial in p' and is not identically zero.

According to Theorem 3.2.8 there exists a sequentially almost

complete set, P', of (k-l)-tuples such that A(2') # 0 for

2'"P', Hence, we may consider a fixed value 26 - j21 such

that g0 (pl) - g(pl,j) still involves pl. Then there exists

a P1 " p10 such that g(pl0 ,wl) - 0. This, however, leads to

a contradiction, because both Repl0 > 0 and Repl0 < 0 are

impossible due to our hypothesis.

Theorem 3.2.10: Let g be a polynomial in 2 and assume that

there exists an i'c I and a fixed value p0 such that g()-0

if pi,-p 0  and the remaining pi take any arbitrary value

belonging to a sequentially infinite set of order k-l. Then

g contains (p-p0 ) as factor.
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Proof: we may assume i'-l. Write g as a polynomial in p'
whose coefficients are polynomials in pl. In view of Theorem

3.2.3, with k replaced by k-i, all these coefficients are

zero for pi-P0.

Theorem 3.2.11: If g(2) is a polynomial and g(p0 )*.0 for

some 2O then there exists an n > 0 such that g(,) # 0 for all

p in the neighbourhood I12-2011 < n. more generally, for any

£ < 0 there exists an n > 0 such that Ig(p)1>Ig(2 0 ) - c for

12-201<n •<'n

Proof: Since g is a polynomial and hence a continuous

function of p, for any given c > 0 there exists an n > 0 such .
that for all p satisfying Ilp-pO1H < n we have that

lg(p)-g(2o)1 < e, i.e., Ig(p)j>jg(po)I-c, thus Ig(p)1>0 if we

choose £<lg(2 0 )I.

Theorem 3.2.12: Let g be a polynomial in p having a zero at '

P.O" Let U be any neighborhood of 20" There exists a
b
€

sequentially infinite set PcU of k-tuples 2 that is of order

k-i and such that g(R)-Q for pCP.

Proof: Since any polynomial can be decomposed into a product

of irreducible factors, it is sufficient to assume that g is

irreducible. On the other hand, the result is true for k-l.

Assume thus that it holds for k-l, we will show that it

remains valid for k. For this, consider g as a polynomial g,

in 2' whose coefficients are polynomials in p1 and write

20-(P 1 0'20'). In view of Theorem 3.2.10, g1 cannot be

identically zero for pi-pl0 since otherwise g would not be

irreducible. Hence, we may move p, from plO to a position

p1l close to PI0 , apply to g, the continuity property of the

zeros of a polynomial in several variables (2I, and conclude

that there exists a 21 such that gl( 1,')-O for p1 -pl I . By

assumption, there exists thus a sequentially infinite set P'
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of (k-1)-tuples p' that is of order k-2 and such that

g(32)-0, thus g(p,')=0, for 2 'cP' and pl-pl.
Furthermore, for any pll sufficiently close to P1 0 any

corresponding value 2' then resulting in the way just

explained is such that (pll,2 )cU. Hence, a set P as

required does indeed exist.

This result together with The-rem 3.2.5 yields immediately

the following corollary:

Corollary 3.2.12.1: Let g and h be two relatively prime

polynomials in 2 and let p0 be a common zero of g and h.

Then in any neighborhood of p0 there exist points 2 for

which, say, g(R)-0 and h(2)s0.

The following theorem is known in a more general form from

the theory of functions in several complex variables (10],

but is included for the sake of completeness and in order to

point out a simple proof based on the above results.

Theorem 3.2.13: Consider the function F-h/g where g and h

are relatively prime polynomials in p. If F is known to be

bounded for all those 2 in a domain D where g(p)*0, then

g(E)*0 for all RcD.

Proof: Without loss of generality, we may assume JF()! l

for 2cD. Assume that there exists a point 20ED such that

g(0)-0. In view of Corollary 3.2.12 it is sufficient to
assume h(20 )*0. Due to continuity of the polynomial g we may

state that for any e>0 there exists an nI>0 such that
Ig(p1 )l<c for all 21 satisfying S21-2011<rI. similarly, due

to Theorem 3.2.11, for any c>0 there exists an n2 such that
lh(Rl)I<lh(2 0 )l-c if 112 1-20 11<n'2. Clearly, we may choose

c<lh(2 0 )I/2, in which case the expression for h(21 ) beccmes

lh(p 1 )I>c. Choose then n>0 such that n< n and n~n,. Due t:
Theorem 3.2.8, we can choose p, such that ;i'2- 0oi<n and

g(2l)*0, i.e., by assumption, that Ih( 1 )/,g(pl)J1 l. This is
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in contradiction vith and Ih(21)I>e.
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3.3. Properties of Widest Sense Hurvitz Polynomials and Self-

paraconJugate Hurwitz Polynomials

The proof of the following Theorem is rather trivial:

Theorem 3.3.1: Let g be a widest-sense Hurwitz polynomial in

2. The following holds:

(i) Freeze one of the Pi' say pi,, at Pi,0 with Re pi,0>0.

The resulting polynomial in the remaining k-l variables Pi is

also widest-sense Hurwitz.

(ii) Factors and products of widest-sense Hurwitz polynomials

are also widest-sense H%4rwitz.

Lemma 3.3.2: Let g be a widest-sense Hurwitz polynomial. Let

91 be the polynomial in k-i variables obtained by freezing
any one of the variables pi, say Pji" at Piwj.i,0 . Then,

(i) there exists an almost complete set, 2', of real numbers.

such that g, is widest-sense Hurwitz if i,Ocg' and that g,

is identically zero if wiO09';

(ii) There exists an almost complete real set Q"cQ, such that

for wiO9 c, g1 is widest-sense Hurwitz and has, in its k-l

variables, the same partial degrees as g.

Proof: We may assume i'-l. Write g as a polynomial in 2'

whose coefficients are polynomials in pl.

(i) There are at most finitely many values of P1 . thus a

fortiori finitely many such values with Re pl-O, for which

all these coefficients can become zero. Choosing Iw10
different from any of these values, moving p1 slightly from

:W:10 into Pe p,>O, and applying the continuity proper:y cf

the zeros of a polynomial, we see that a zero of gl(p') in
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Re p'>O would imply a zero of g in Re p>O. The proof of (ii)

follows from M.) and Lemna 3.2.6.

The following result follows by applying Lemma 3.3.2 m times:

Theorem 3.3.3: Let g be a widest-sense Hurwitz polynomial in

p, and let pm denote an m-tuple obtained by selecting any m<k

of the variables p1 to Pk. Let us freeze 2. at 2mo-j~mo and

let gl be the resulting polynomial in the k-m remaining Pi.

Then

(1) 91 is either widest-sense Hurwitz or identically zero;

(ii) more precisely, for any ordering selected, there exists

a sequentially almost complete set, 9'm , of real m-tuples

such that g, is widest-sense Hurwitz if !im¢g1m and that it

is identically zero if wmO2 ' m

(iii) there exists a sequentially almost complete set,

g mC'm , of real m-tuples such that, for Wm~t2"m , g, is

widest-sense Hurwitz and has, in its k-m variables, the same

partial degrees as g.

Theorem 3.3.4: If g is a proper self-paraconjugate Hurwitz

polynomial then there exists a sequentially almost complete

set, 9, of order (k-1), composed of real k-tuples w such that

g (J2) - 0 for any w c 2.

Proof: We may assume that g depends on pl. Consider the one-

variable polynomial g,(pl) - g(p l , j26), obtained by freezing

p' at 2' - J26, where w6 is a real (k-l)-tuple. Due to

Theorem 3.3.3, there exists a sequentially almost complete

set, 2', of order (k-I) such that, for any w6 C 2', g1 is of

degree > I and is widest-sense Hurwit:. Hence, there exists

at least one Pl0 , necessarily witn Re p1 0 < 0, such that

g1 (p1 o) - 0. However, since g* - Cg, pl0 = - p1 is also a
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zero of gl' where Re Pjo < 0, i.e., Re plO > 0. Hence,

Re p 0 -0.RePlo " O

Theorem 3.3.5: Let g be a widest-sense Hurwitz polynomial

and let d be the greatest common divisor of g and g,. Then d

is self-paraconjugate Hurwitz.

Proof: In view of Lemma 1 in (31, we have d, - Cd where C is

a constant. The rest follows from Theorem 3.3.1.

6heorem 3.3.6: If g(p) is a widest-sense Hurwitz polynomial

in 2, then g(p) and g,(p) have a proper common factor if and
only if S(jw) - 0 where the real k-tuple w can assume any
value belonging to a certain sequentially infinite set of

order (k-1).

Proof: Necessity follows Theorem 3.3.4 and 3.3.5,

sufficiency from Theorem 3.2.5.

Theorem 3.3.7: A widest-sense Hurwitz polynomial, g, can oe
written as a product of a scattering Hurwitz polynomial and a

self-paraconjugate Hurwitz polynomial.

Proof: Write g - ad where d is the greatest common divisor

of g and g,. Then, a is relatively prime with a*. The rest

follows from Theorem 3.3.1 (item (ii)) and 3.3.5.

The following corollary follows immediately:

Corallary 3.3.7.1: An irreducible widest-sense Hurwitz
polynomial is either scattering Hurwitz or self-paraconjugate

Hurwitz.

Theorem 3.3.8: A polynomial g is self-paraconjugate Hurwitz

if and only if g * 0 for Re2 > 0 and for Re2 < O.
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Proof: Necessity: Since g, - Cg, a zero for Re2 < 0 would

imply a zero for Re2 > 0 and is hence excluded.

Sufficiency: If 9(2) 0 for Re2 > 0 then due to Theorem

3.3.3 g is the product of a self-paraconjugate Hurwitz factor

and a scattering Hurwitz factor. However, factors of the

latter type are excluded because they are known to have zeros

in re2 < 0 (Theorem 3 in (31).

Theorem 3.3.9: A polynomial g is self-paraconjugate Hurwitz
if and only if all its irreducible factors are
self-paraconjugate Hurwitz.

Proof: Sufficiency is quite obvious. To show necessity,

observe that, due to Corollary 3.3.7.1 irreducible Lactors of

g are either self-paraconjugate Hurwitz or scattering

Hurwitz. Presence of a scattering Hurwitz factor, in view of

Theorem 3 in (3], would imply that g has a zero in Re2 < 0,

which is ruled out by Theorem 3.3.8.

The following corollary follows immediately:

Corollary 3.3.9.1: factors and products of
self-paraconjugate Hurwitz polynomials are self-paraconjugate

Hurwitz.

Corollary 3.3.9.2: Let g be a scattering Hurwitz polynomial

and h oe a self-paraconjugate polynomial. Then, g and h are

relatively prime.

Proof: Otherwise, g would contain a proper self-paraconju-

gate Hurwitz factor and thus would not be relatively prime

with g.. Alternatively, apply Theorem 3.3.8 as well as

Theorem 3 in [3].

Lemma 3.3.10: Let g be a polynomial, and let us select one
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of the pi, say pl, and choose a Z n - deglg. Then the
polynomial g'("~') - " a.g(01- 1 '21) is widest-sense Hurwitz if

and only if g is widest-sense Hurwitz.

Proof: obviously follows from the fact that g'(rI01' 0 )-O for

Iell > 0, Rep6 0 if and only if p, - n-1 , PM is a

zero of g in Rep > 0.

Theorem 3.3.11: Let g be a widest-sense Hurwitz polynomial

in 2 and let i be any of the integers 1 to k such that

n -md~g~g 1. Then 3 V g/apj' for v - l,2# ... ni is also

widest-sense Hurwitz.

Proof: it is enough to prove the theorem for ve = 1. Assume

i1 1. Since the polynomial g,(pl) - g(pl11 .) obtained by
freezing p, at p in Rep0  0swds-sense Hurwitz, by

invoking a classical result it follows that dgl/dpl is also
widest-sense Hurwitz. The result then follows by noting that

Dg/p,- dgl/dpl , when 2 -

Note, however, that ag/api is not even scattering Hurwitz

when g is strict sense Hurwitz. As an example, the

polynomial 9 - pJp 2.p1.l is strict sense Hurwitz, but 3/P
W p1 is only a widest-sense Kutwitz polynomial.

Let us write the polynomial g~q) with dog, g a n1 as

where the A (p') are polynomials in #

Lema 3.3.12: Let g be a widest-sense Hurwitz polynomia:
ifv0'.v.,,ng one of the variables, say p,. if g is written 3s

in 13.4), then for any two integers m.8 with 3 S.n

and A CRO, there exists a set of positive integers NI.
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l,...,p, such that the polynomial in (3.5) is widest-sense I
Hurwitz.

Z N A 1( Pp

-M CL(3.5)

Proof: Due to Theorem 3.3.11, gL - g/apm is widest-sense

Hurwitz, while de I a - (nlj-). Consequently, due to Lemma

3.3.10, g Pl g(p1 -1) is also widest sense Hurwitz,

with deglg - n1-s . Invoking Theorem 3.3.11 again, it

follows that go - 1 g/aPl is widest-sense Hurwitz

with deg1  go - (n-*)- (n1-O) - (O-a). Therefore, from
Lemma 3.3.10 we have that g- .p1  g(p 1 ) is widest-sense

Hurwitz. The proof is then completed by noting that g has

the form (3.5).

Theorem 3.3.13: Let g be a widest-sense Hurwitz polynomial,

expressed as in (3.4), and # be any integer 0 < # n .

Then the following hold true: i) If A g 0, then A is

widest- sense Hurwitz; in particular, An (P') # 0 for Re2'>O.

(i) If 0 p ,u+l,.... y n1 and y > 2 then it is impossible

to have A 0 1 A A 2 ...- A #y. lm 0, A A 0,

A , 0. (iii) For any # satisfying 1 ( p I n1 -l, if A 0,

A _- o 0 and A + ) 0 then A p_/A 1 is a positive constant.

(iv) If for any # satisfying 0 C nI , A / 0, A +1 A 0

then A /A 1 is a positive function.

Proof: (i) Follows immediately by choosing a-o-u in Lemma

1.3.12. %

(ii) We prove this for Y - 3, the proof being similar for

Y > 3. Lemma 3.3.12, with a - + ,0 - i + 3, implies that 93

- (N o+3 A ) is widest sense Hurwitz, where N 3 and

N are positive integers. However, this latter conclusion is

impossible due to the fact that for any fixed 2' in Rep' > 0

(where, due to (i), A # 0 and A m+ 3  0) the cubic equation
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93 = 0 in p, has at least one solution in Rep, > 0.

(iii) Lemma 3.3.12 with a-u-l,o - p+l implies that g2 "

(N#+1 A/+1 p12 + N/_IAp I ) is widest sense Hurwitz, where

N,+1  and N,_1 are positive integers. we may claim that

A _,/AU+ 1  is real and positive for each A' in Rep'> 0 ,

because otherwise there would exist a ' 0 in Rep'0 > 0

for which the equation g2 - 0 would have a solution in Rep, >

0. Since A _I/A 1  is thus holomorphic as well as real

everywhere in Rep' > 0, invoking a standard result in the

theory of functions of complex variables (e.g. the theorem on

the minimum of the imaginary part), we have that A,_I/A,+1 is

a constant.

(iv) Lemma 3.3.12 with a-p , 0-#+l yields that g, - Nj+I

A iP1  + N A is widest-sense Hurwitz. Clearly, if A /A+ 1

has negative real part for some 2' - p'0 in Re2'0 > 0 then

91(pl0,p-0 )  - 0, where Pl0--[N 0A 0(§0)]/(NM+lA#+i("0)].
Since Repl0  > 0, the latter conclusion is impossible due to

the widest-sense Hurwitz property of gl.

Theorem 3.3.14: Let g be a widest-sense Hurwitz polynomial

in 2 and g1  be the (k-l)-variable polynomial obtained by

freezing any one of the variables, say pI, at p1 - p1 0 in

Rep1  > 0. Then degig - deglgl for the remaining variables

Pit i - 2 to k except possibly for finitely many values of

P1 0 on Rep1 - 0.

Proof: Write g as a polynomial in 2' whose coefficients are

polynomials in p1 . Let A - A(pl) be any one of these

coefficients that is not identically zero for all pl. By

repeated application of Theorem 3.3.13, item (i), it follows

that A(pl) is widest-sense Hurwitz. Hence, A(pl0 ) # 0 for
Re p10 > 0 and there are at most finitely many PI0 -j10 for

which A(jwI0 ) - 0 (cf. also Lemma 3.3.2).
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3.4. Properties of scattering Hurwitz polynomials.

Theorem 3.4.1: If g is a scattering Hurwitz polynomial then

g cannot have a zero for a 20 with Repi0 - 0 for one of the i

and Repi0 > 0 for the remaining i.

Proof: We may assume RePi0 - 0 for i - 1 i.e., p1 0 - Jw10"

In view of Lemma 3.3.2, a zero of the type just mentioned

would require g(jw 10 , p') a 0 for all 2'' Thus, in view of

Theorem 3.2.10, (pl-jw10 ) would be a factor of g. Since

(p1-Jo10 ) is self-paraconjugate, this is excluded due to

(3.3).

It is important to note, however, that a scattering Hurwitz

polynomial can indeed have zeros e.g. for p1 M jW 1 P2 - Jw2

and Repi > 0, i - 3 to k. Consider the polynomial g - Pl P2 +

P2P3 + p 3P1  + P l P2 P 3, which is scattering Hurwitz 11, but

g-0, when p1 " P2 - 0.

Theorem 3.4.2: Let g be a scattering Hurwitz polynomial and

let i' be any specific one of the i - 1 to k. Then the

(k-l)-variable polynomial g, obtained by freezing Pi, at pi,

M J-i,0 is also scattering Hurwitz and has the same partial

degrees in the remaining variables as g, with the possible

exception of at most finitely many values of w i 0 "

Proof! We may assume i' - 1. Referring to Theorem 3.4.1,

9l(2')- g(Jwlo0,') o 0 in Re2' > 0. Furthermore, g(p) and

g,(p) do not have any nonconstant common factor. Therefore,
due to Theorem 3.2.7 with m-1, the polynomials gl(p') and
gl * (12' )  g*(Jw1 0 , - 2'*) - g(Jwi1 0 ,p') can have a common

nonconstant factor for at most finitely many values of w 10"

Furthermore, in view of Lemma 3.2.6, a lowering of a partial

degree can also occur at most for finitely many values of

wl0"
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In view of the above theorem and Definition 3.2.1a it is also

possible to state the more general result:

Theorem 3.4.3: Let g be a scattering Hurwitz polynomial.

For any m such that 1 < m < k consider the (k-m)-variable

polynomial g' obtained by freezing m of the pi at pi - Jwio

for, say, 1 < i < m: Then there exists a sequentially almost

complete set, g9, of order m of m-tuples such that for

(W10,'20,...'mO) CQm, g' is still scattering Hurwitz, with

the same partial degrees in pM+l to Pk as g. Furthermore,

any ordering may be chosen for the set 9M.

Proof: Proof of the above theorem follows by sequentially

freezing, in any order, the variables pi to pm on the

imaginary axis and observing Theorem 3.4.2.

Theorem 3.4.4: A polynomial g in k variables is scattering

Hurwitz if and only if (i) g is widest-sense Hurwitz, and

(ii) the set of real k-tuples w such that g(jw) - 0 does not

form a sequentially infinite set of order (k-l).

Proof: Follows immediately from Definition 3.2.4, and

Theorem 3.3.6.

Lemma 3.4.5: Let g be a scattering Hurwitz polynomial.

Freeze one of the pi, say Pi,, at Pi'0 with Repi,0 > 0. The

resulting polynomial, gl' in the remaining pi is still a

scattering Hurwitz polynomial, and the partial degrees of g,

in these remaining pi are the same as for g.

Proof: Without loss of generality we may assume that i'-I

i.e., 1  - g1 (2'). Obviously g, is widest sense Hurwitz

(Theorem 3.3.1). We show in the following that g1 and g*,

are relatively prime. If g1 and gl* have a nontrivial common

factor, then due to Theorem 3.3.6 there exists a

sequentially infinite set, 2' of real (k-l)-tuples w' of
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order (k-2) such that g(pl0 , w') - 0 for all w" c '. Thus,

applying Theorem 3.3.3, item (i), for m - k-i, we conclude

that g(pl,jw') - 0 for all p1 and all w'c Q'. We therefore

have, in particular, g(jwl,jw') - 0 for all w'cg' and any

arbitrary w1. Thus g would be zero for real k-tuples w

belonging to a sequentially infinite set of order (k-1),

which is impossible in view of Theorem 3.4.4. Furthermore,

the preservation of the partial degrees follows from Theorem

3.3.14.

Repeated use of Lemma 3.4.5 yields the following more

general result:

Theorem 3.4.6: If g is a scattering Hurwitz polynomial in £

then for 1 < m < k the m-variable polynomial, g', obtained by

freezing (k-m) of the pi at pi Pi0  in Repi > 0 is

scattering Hurwitz and the partial degrees of g' are the same

as the corresponding partial degrees of g.

Theorem 3.4.7: If g is a scattering Hurwitz polynomial

expressed as in (1) with degig - ni , then A. )d 0 for each I%

V - 0,1,2,... n

Proof: Assume i - 1. For any p' - p'0 with Re£'0 > 0, the

polynomial gl(pl) - g(Pl'£6)' due to Theorem 3.4.6, is a
.. .

scattering Hurwitz polynomial in the single variable p1
(i.e., a Hurwitz polynomial in the classical sense (3]) of

degree equal to nI - deglg and thus has nonzero coefficients

for -0 to n.
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3.5. Rational Positive Functions and Related Results

Theorem 3.5.1: Let F-h/g be a rational positive function in

irreducible form (g and h thus being relatively prime

polynomials) with h(2 ) A 0 (and, obviously, g(p) $ 0). Then,

(i) the polynomial g+h is scattering Hurwitz,

(ii) both g and h are widest-sense Hurwitz.

Proof: (i) Consider the function

p - (F-1)/(F+I) (3.6)

which we can write in the form p-c/d, c and d being defined

by c-h-g, d-h+g. Clearly, c and d are relatively prime.

Then, for Re p>O and d(p) # 0, we have Re F(R)>0 and thus

10(2)11 if g(2)00, and o(p)-l if g(2)-0. Hence, by Theorem
1 in (3] (where in view of the proof of Theorem 1 in [1], on

which the proof of Theorem I in [3] is based, (3.4) should be

interpreted to mean that the first inequality is known to

hold for all those 2 in Re2 >0 for which g(2)*0), d is

scattering Hurwitz. (Note that d(p)*O for Rep>O follows from

Theorem 3.2.13.)

(ii) Since d(p)*0 in Re 2>0, we cannot have g(p)-h(2)-0 in

Re 2>2. If only one of the polynomials g and h has a zero
for a 20 with Re 20 > 0 we have o-+l. This, however, is

excluded since due to the maximum-modulus theorem (10] we

have in fact 10(2)1<1 in Re 2>0, except if o is a unimodular

constant, i.e., if F-jC, C being a real constant (in which

case g-1, h-jC).

Theorem 3.5.2: If F is a rationa. posit:''e function, then
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(i) Re F(1)>0 if Re 2>0 and F is nontrivial;
(ii) Re F(p)>O for any 2 in Re p 2 where F(p) is holomorphic;

(iii) assuming F(2)*O, 1/F is also a rational positive

function.

Proof: (i) Define P by (3.6) and consider a closed

polydomain 0 in the neighborhood of an arbitrarily selected

point 20 with Re 20>0. In view of Theorem 3.5.1, F and P are

holomorphic in U. Thus jp(p)l1l for p c 1, while application

of the maximum-modulus theorem in its simplest form (10]

yields Ip(p0 )I<l, i.e., Re F(20 )>0. The proof of (ii)

follows by simple continuity arguments, and that of (iii)

follows in an obvious fashion from (i).

Theorem 3.5.3: If g and h are relatively prime polynomials,

then F-h/g is a positive function if and only if (i) the

polynomial d-g+h is scattering Hurwitz, (ii) Re F(jw)>0 for

all p-j! where F(2) is holomorphic.

Proof: Necessity of (i) follows from Theorem 3.5.1,

necessity of (ii) from Theorem 3.5.2 item (ii). For proving
sufficiency, observe that for p defined again by (3.6) and

d(jw)*0, we have Re F(j) 0 and thus Ip(j&)Jl if g(jw)* 0,

and p(j&)-l if g(j2)-0, altogether thus Io(jo)IJl wherever
o(jw) is holomorphic. Hence applying Theorem 1 in (2]

(generalized maximum-modulus theorem), we conclude that in Re

2>0 we have o(p)<1 and thus also Re F(p)>O. The only
exception to this is if p is a unimodular constant, in which

case F is an imaginary constant, thus a trivial positive
function.

lemma 3.5.4: Let F be a positive function (reactance

function). For any m such that 1 < m < k, consider the

fk-m-variable rational function F' obtained by freezing, in

F, m of the variables p, at p, M jwi0 , say far i - I to m.

Then there exists a sequentially almost complete set, 9m' of
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order m of real m-tuples such that for any (wl, 0w201 ... %O) )

QM , F' is still a positive function (reactance function). If

in addition, F is given in irreducible form, F-h/g, then

can be chosen such that F'- h'/g' is also in irreducible

form, h' and g' being obtained by applying the corresponding

freezing operation to h and g, respectively, and that the

partial degrees of h' and g' in the remaining variables are

the same as for h and g respectively, with R* remaining

otherwise as stated.

Proof: We need to prove the lemma for a - 1 only. Due to

Theorem 3.5.1, g is widest-sense Hurwitz. Also, let g'(2')

-g(Jw0,'). Due to Lemma 3.3.2, there exists an almost

complete real set, 21, such that g'(2') o 0 for Re2' > 0 and

W10 c Qi and that the partial degrees of h' and g' in P2 to

Pk are the same as those of h and g, respectively. In

particular, for w10 C 2j, r is regular for Re2 ' > 0, and by

invoking Theorem 3.5.2, it follows that the function F'('1)-

F(jwI0 , 2'), for w C , satisfies the property that

ReF'(.') 0 for Re.'>0, i.e., it is a positive function.

Furthermore, if F is a reactance function then

F + F* - 0 implies that F' + F: - 0. Consequently, F' is a

reactance function.

Also, due to Theorem 3.2.7, there exists an almcst

complete real set 2j such that the polynomials g'(2') and

h'(2') - h(Jw 10,1 ') are relative prime for wl0 c 2.

Therefore, h'/g' is in irreducible form if w is required to

be in the almost complete set i 1 (Qg P.)"

Lemma 3.5.5a: The numerator and denominator polynomials of a

positive function in irreducible form cannot contain

self-paraconjugate factors of multiplicity larger than cne.

Proof: Let F - h/g be a positive function in irreducible

-64-
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forl, and 9 contain a proper self-paraconjugate factor, a, of

multiplicity v. Let a involve, say, pl. Then it follows by

invoking Le~ma 3.5.4 with m - k-i that there exists a

sequentially almost complete real set, 9', of order kx-lI

such that for any real k-tuple w'0  c 9', the rational

function F I hl,q.l , with hj(pl) - h(pl,]L' O ) and gl tpi -I

(pljw'O) , is a one-variable positive function in

irreducible form and that the partial degree of g, in p1 is

the same as that of q. Obviously, a p1( - alp.,:'> . 's a

nonconstant factor of 91- q11pli of multiplicity at least

equal to v. Since a is self-paraconjugate, a I is also sef-

paraconjugate. furthermore,, taking into account Theorem

3.3.3, aI is widest-sense Nurwitz and, therefore, :ts zeros

are restri-ed t! be on p. - 'w. Csoen"' 7. 6as Zercs

of multiplicity at least v on the pj. x. mi;s S ~n~e 3. 6$

the denominator of a poa:tive function imn rreducibie form,

the leatter conclusion dictates that - . S9miar arumen's

hold for ? 9 ; ,n view 'f Teorem ' 'em .

Lem 1. :tl .f F - ;s a pe... . fanr.7r w.- - and ;

polyn•omials then 1*9i *ic a . -

1.2,

Proof- The Pro-Cf fo.~sty ael'pt.-'o 4 'ae ,s a
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invoking a vell known one-variable result ye asert that

(dgl/dpl)/q, is a positive function. However, since this

latter conclusion is true for any p6 in Rep' > 0, we have

Re((a9/3pl)/gJ > 0 for Re2 > 0.

Finally, for the sake of completeness, we offer a more

complete, but obvious version of Theorem 3.5.2, item (i).

Theorem 3.5.7: A rational function F is a nontrivial

positive function positive if and only if Ref(2) > 0 for Rep

> 0.

Proof: Sufficiency follows by a simple continuity argument.

Necessity has been shown in Theorem 3.5.2, item (1), but it

also follows by simple application of the theorem on the

minimum of the real part of a holomorphic function.

Alternatively, we may freeze 2' at a 26 with Re26>0, in which

case F reduces to a functicr F, in p1 alone. Applying

Theorems 3 3.1, 3.3.14, and 3.5.1, r, is found to be a

nontrivi•a pcsitive function, i.e., the proof is reduced to

the known cne-variable result PeFr P 1 )>O in ReP 1 >O.

L %%,. -*



3.6. Reactance Hurwitz Polynomials I
The following lemma follows directly from Definition 3.2.6

and Theorem 8 in (3):

Lemma 3.6.1: A reactance Hurwitz polynomial is

self-paraconjugate Hurwitz.

Definition 3.2.6 is justified by the following theorem:

Theorem 3.6.2: 1. If g is a reactance Hurwitz polynomial,

there exists a polynomial, h, relatively prime with g, such

that h/g is a reactance function in irreducible form.

2. Vice versa, if h/g is a reactance function in irreducible

form, the following holds: (i) g and h are reactance Hurwitz

polynomials. (ii) For any constant C, the polynomial d

defined by d-g0.h 0 , 90-Cg, h0 -Ch, is scattering Hurwitz. In

particular, it is always possible to choose C in such a way

that the paraeven and paraodd parts of d are equal to go and

h0 , respectively, or that these parts are equal to h0 and g0 ,

respectively.

Proof: ror proving the first statement, observe that in view

of Definition 3.2.6 there exist polynomials g0 and h0 such

that g0 ,-Ig0 , h0 -;h0 , and 90  - Cg and that g0 +h0 is

scattering Hurwitz, the two upper and the two lower signs

corresponding to one another and C being a nonzero constant.

by Theorem 7 of (31, h0 /g0 is then a reactance function in

irreducible form and the same is thus true for h/g where

hah 0/C.

For proving the second statement, observe first that in view

of Theorem 3.5.1, g and h are widest-sense Hurwitz while

9 0 h0 is scattering Hurwitz where g0 -Cg and h0 -Ch, C being an

arbitrary nonzero constant, and that in view of Definition

-67 -
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3.2.9 we have h,/gm-h/g, thus g,-yg, h,=-Yh,y being a

constant (necessarily unimodular). If in particular we

choose C such that C2 -Y y we have go,-=g 0 , h0 ;hO.

Theorem 3.6.3: If g is a self-paraconjugate Hurwitz

polynomial then for any i - 1 to k with ni - degig 1, F -

h/g is a reactance function where h - ag/3pi.

Proof: From Theorem 3.5.6 it follows that h/g is a positive

function. Assume i - 1. If g is written as in (3.4), then

g. Z AV* (P'). (-pl) .

0

Since g is self-paraconjugate, g - Cg* for some constant C

with ICI - 1. Therefore, A. - (-I) CAV, whence it can be

shown that 3g/3p1 --C(3g/ip l ),. It thus follows that F.-F.

Consequently, r is a reactance function.

Corollary 3.6.3.1: If g is an irreducible,

self-paraconjugate Hurwitz polynomial then for any i - I to k

with ni - degig a 1, (3g/3pi)/g is a reactance function in

irreducible form.

Proof: Since g is irreducible and the partial degree of

ag/3Pi is smaller than that of g in the variable p, the

polynomials ag/api and g are relatively prime. The proof is

then completed by observing Theorem 3.6.3.

Theorem 3.6.4: A polynomial g is reactance Hurwitz if and

only if all its irreducible factors are self-paraconjugate

Hurwitz and it contains no multiple factors.

Proof: Necessity: If g is a reactance Hurwitz polynomial,

invoking Theorem 3.6.2 there exists a reactance functiin,

thus a positive function, Frheg, such that h and I are

relatively prime. In view of Lemma 3.6.1 and Theorem 3.3.9,
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irreducible factors of g are necessarily self-paraconJugate.

It then immediately follows from Lema 3.5.5& that g cannot

contain multiple factors.

Sufficiency: Let gi, i - 1 to v, be the irreducible,

distinct, self-paraconjugate factors of 9. Let gi involve

the variable p ¢{pl'p2,...,pk) and consider the polynomial h

defined by h/9 - , (hi/gi),h I - 19i/1pi.

i-I

From Corallary 3.6.3.1 we conclude on the one hand that h/g

is a reactance function, and on the other that each hi is

relatively prime vith the corresponding 91. Thus, since by

assumption the 91 are pairvise mutually prime, h is

relatively prime with g. The proof is then completed by

observing Theorem 3.6.2, second part, item (i)

Corollary 3.6.4.1: Products of reactance Hurvitz

polynomials, that are pairwise relatively prime are reactance

Murvitz polynomials. Conversely, any factor of a reactance

Hurwitz polynomial is also a reactance Hurwitz polynomial.

Proof: Follows immediately from Theorem 3.6.4

Corallory 3.6.4.2: A polynomial, g, is reactance Hurwitz if

and only if it is self-paraconjugate Hurwitz and contains no

multiple factor.

Proof: Follows from Theorems 3.3.9 and 3.6.4.

Corollary 3.6.4.3: Any scattering Hurwitz polynomial is

relatively prime with any reactance Hurwitz polynomial.

Proof: Follows from Corollary 3.3.9.2 and Lemma 3.6.1.

Theorem 3.6.5: Let g be a reactance Hurwit: polynomial. FP r
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a1MY integer a such that 1 a ( k, freeze a of the variables
pi at pi a JUO say for 1 1 to M. Consider the polynomial
91 in p * 1 to p.defined by 9'P~""P) 91U0..J60

Ps~l' "Pk). Then there exists a sequentially almost

complete set, 9 s of order a of real m-tuples such that for

(*1@.320...w.0 O*,Q q 9 is still reactance Hurwitz and that

Its partial degrees in pa to Pkare the same as for 9.

Proof: Due to Theorem 3.6.2 there exists a polynomial h such

that r h/9 is a reactance function in irreducible form.

Applying Lemma 3.5.4 to the rational function r - hi;. we

conclude that 2* msay be chosen in such a way that the
resulting r, * h/g, is a reactance function in irreducible

form, with 9' having the ese partial degrees in p 4+1 to P
as 9. The rest of the proof follows by applying item (i) of

the second part of Theorem 3.6.2 to rt.
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3.7. Properties of Immittance Rurwits Polynomials

The following theorems justify the characterization of

immittance Hurwitz polynomials as given in Definition 3.2.7.

Theorem 3.7.1: If r - h/g is a positive function in

irreducible form, then both h and g are immittance Hurwitz

polynomials.

Proof: g is widest sense Hurwitz in view of Theorem 3.5.1.

Invoking Theorem 3.3.7 it follows that g is product of a

scattering Hurwitz polynomial, 91, and a self-paraconjugate

Murwitx polynomial, g2 . By virtue of Corollary 3.3.9.1,

Lemma 3.S.Sa, and Corollary 3.6.4.2, 92 is reactance Rurwitz.

The same argument holds for h.

Corollary 3.7.1.1: ractors of immittance Hurwitz polynomials

are immittance Hurwitz. Conversely, products of immittance

Hurwitz polynomials that do not have any common self-

paraconlugate factors are also immittance Hurvitz.

Proof: Obviously follows from Definition 3.2.7 and Corollary

3.6.4.1.

Theorem 3.7.2: Every immittance Hurwitz polynomial is the

numerator or denominator of a positive function in

irreducible form.

Proof: Since the reciprocal of a positive function is also a

positive function, it is enough to prove the theorem for the

denominator polynomial, 9. Let g - ab, where a and b are,

respectively, the scattering Hurwitz and the reactance

Hurwitz factors of 9. Then, due to Theorem 3,6.2, there

exists a polynomial C that is relatively prime with b and

such that t is a reactance function. L-t us define F -

(a, a * ,c b,. r can also be written in the for2 r - h q,
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where h - ab + a*b + ac. Since a,/a is an all-pass function,

1 + (as/a) is a positive function (cf. Lemma 2 of (31), and

the same is true of F. According to Corollary 3.6.4.3, a and

b are also relatively prime. Furthermore, in view of the

definition of a scattering Hurwitz polynomial, a is

relatively prime with a*. Hence, since h - a(b+c)+a~b -

(a+a.)b+ac, h can not be divisible by any factor of a or of

b. The proof is thus completed by observing that any common

irreducible factor of h and g would have to be a factor of

either a or b.
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3.8. Tests for Positive Functions and Related Results

Results, which are useful in identifying pusitive functions

based on their behavior on the distinguished boundary of the

domain of holomorphy have already been proved essential (11]

in problems related to multivariable network synthesis and

are elaborated in this section.

Theorem 3.8.1: Assume that the rational function F - h/g

satisfies the following properties: (i) 9 is a scattering

Hurwitz polynomial (ii) degih ( degig, i - 1 to k;

(iii) Rer(j!) > 0, where a is any real k-tuple such that F(2)

is holomorphic at 2-jg" Then r is a positive function.

Note that we have not assumed the polynomials h and g to be

relatively prime.

Proof: The validity of the theorem for k - 1 is classically

known. To prove the result in the general case, via

induction on the number of variables, we assume that the

theorem be true for k-I variables, where k > 2.

Let us freeze one of the variables, say p1. at jW10 and

define the rational function in k-1 variables, F - h1/9 1 ,

where h1 (2') - h(Jwl0 ,2') and 1(2 ' ) - g(Jlo,'. Due to

Theorem 3.4.2. there exists an almost complete set, Q' of

real numbers such that for all w 10 g1 (2') is scattering

Hurwitz and degig - degig l , thus degih 1  degig1 , for all i -

2 to k.

Since gl(J') - g(jwl0, '), the condition gl(jw') m 0 implies

g(jw 10 ,jw') 0 0. Thus, Ref, (J!') -Ker(Jwlj 1 ') > 0 for

9 l (jW') 0 0.

All the prerequisites for the validity of the present theorem

are, therefore, satisfied by the (k-I-variable raticnal

function F Hence, by induction hypothesis, ReF 12 )' > 0
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for ReR' > 0. Therefore, if w10 C 91 then (3.7) applies.

ReF(Jw1 0 , 2') > 0 for all Rep' > 0. (3.7)

Let us now freeze the variables 2' at an arbitrary point 26

with Re26 ) 0 and define the rational function F0 a h0/g0 in

the variable p1 only, where h0 (pl) - h(p1 ,2'0 ) and g0 (pl) -

g(pl,R). Due to Theorem 3.4.6 with m-k-l the polynomial g0
is scattering Hurwitz, thus Hurwitz in the classical sense

(cf. Theorem 2 of (31) and deglg0 - deglg I deglh > deg1 h0 .

Furthermore, it follows from (3.7) that ReF 0 (Jwl) > 0 for w1
c 2 V Hence it follows from a classical result that ReF 0 (pl)

> 0 for all p, with Rep, > 0. Therefore, we conclude that

ReF(p) > 0 for Re2 > 0.

The following comments on the above result are in order. In

the one-variable case the proof of the above result follows

by invoking the maximum modulus theorem on the function

,xp(-F). In the multidimensional situation, however, a

maximum modulus theorem which allows for special types of

singularities on the boundary of the domain of holomorphy is

not found in the literature. Reference 121 gives a version

of maximum-modulus theorem where non- essential singularities

of the second kind are allowed to occur on the boundary of

the domain of holomorphy, but the proof is restricted to

rational functions only. The non- rationality of the

function exp (-r) makes it impossible to use results of [21,

in the present context, thereby calling for an independent

proof of Theorem 3.8.1.

Note that Theorem 3.8.1 can be generalized to include the

possibility that the domain of holomorphy of F be a cartesian

product of domains other than half-planes (e.g., discs) in

the variables pi, i - 1 to k.

The following partial results are of sme .nteres .



Theorem 3.8.2a: If F - d/cg is a positive function in p

written in irreducible form where g is a scattering Hurwitz

polynomial, c is a reactance Hurwitz polynomial that is the

product of reactance Hurwitz polynomials in one-variable

only, and d is a polynomial such that degid < degi(cg), i - 1

n
to k, then F can be decomposed as F- I r + (d /g), where

each F is a one-variable reactance fation and (dl/g) is a

positive function in 2, with degid1 , degig for each i - 1 to
k.

Proof: Write c - cc 2 ...cn, where c - (p4-jw 0 1, V - 1 to

n, each p being one of the p1 to , k and two wv0 being
necessarily distinct if the corresponding p, represents the 0

sane Pi" We claim that the rational functions KV defined in

(3.Sa) are constants. We show this for v-l, assuming p; -

Pit in which case 1 could be a function of '. .

lim n
K( '

2
1 ) - p -Jwo U(p;-jwO )d/cgj ; C - d-cg I X /C

-V= V V (3.Ba,b)

For each 2' p6 in Rep0 > 0, K1 (p") is the residue of the

positive function F'(pl) - F(p,?) at the pole p1 " jw1 0 and

is hence positive and thus, in particular, real and finite.

Therefore, K (p') is real and holomorphic in Re2' > 0.,

Consequently, invoking a standard result from the theory of

functions of complex variables, it follows that K is

independent of 2'; it is thus a positive constant. Consider

next the polynomial C(p) as defined in (3.8b). Substituting

for the K. from (3.8a) in (3.8b) it follows that C is zero

for p, * juw, independently of the values of the other p .

Hence, all c divide C. i.e., since the c are distinct, d I

C/c is a polynomial in 2. Equation (3.9a) then follows by

straightfcrwar1 algebr3ic manipulation, where ' .s 3s

det.ined in 3..
S; c' c 3.9a,

v-. '.
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Clearly, cl/c is a reactance function. Next, we note that

for p J2 = , w real, Re(d /g) - ReF > 0 at all those points

where c(jg)g(jw) 0 and thus, by continuity, where g(jw, ,

0. Due to (3.9) and F - d/gc the inequalities deg d <

degi(gc) imply that degid1  i degig for each i - 1 to k.

Hence, invoking Theorem 3.8.1 it follows that di/g is a

positive function. The proof is thus complete.

Note that the above result can be easily extended t:

the case with simple poles at p1 -- as follows.

Theorem 3.8.2b: If F - d/g is a rational positive function

such that the polynomial g is scattering Hurwitz and dec d

degig for some of the iti, then there exist nonnegative

constants Ki such that F can be written in the form

k
F - r0 + t Kip i where F0 - d0,/g is a positive functi:n wi:-

degid 0 i degig, i - I to k.

Proof: Assume first degid > deg g for i - I. Let A ' a'd

5(2') be the respective leading coefficients of d and g, wnen

considered as polynomials in p, with the coefficients w:rtte-

as polynomials in R' For any p with Re2 0 0 tle f

F1 (pl) - F(pl,26  is a positive function in the vazia:ze ,

only. Furthermore, since due to Theorem 3.3.13, A

O 0 the degrees of d and g in p, remain una'tered Le

to the substitution 2' - 2. Hence, F, p,, i.s a pcsi-:.'e

function having a pole at infinity, necessar,.y simpl.e. 'itn

residue K1 (26'. Therefore, Kj2 is real and postiv'e. tn..s
in particular finite and therefore holoozphi:c f&r aI Rec'

0. This mp~ies. in view of a standa:i :esul.t- tl. :e:-

of f-.nctcrs :f ::mclex 3*.:e sa '. 3 7? 3
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constants for i - 1 to k.

Consider next the rational function F0 - d0 /g defined

via F - F-i .P.- Clearly, ReF 0 (j2) - ReF(j) where w is

any real k-tuple such that g(j2) # 0. Furthermore, degid 0 <

degig for i - 1 to k. This follows, e.g., for the case i - 1

by writing the polynomials d and g appearing in F - d/g in

the same way as above and taking into account that K1

A(2')/B(2
1 ). Invoking Theorem 3.8.1,it then follows that F0

is a positive function.

N

%,

A . ,
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3.9. Conclusions

The artifice of sequentially almost complete and sequentially

infinite sets, which proved to be very useful in the present

context, have been introduced. Properties of widest-sense

Hurwitz polynomials, self-paraconjugate Hurwitz polynomials,

strict sense Hurwitz polynomials and scattering Hurwitz

polynomials have been studied. Several properties of

multivariable positive rational functions have been
investigated in this context. Reactance Hurwitz polynomials

and immittance Hurwitz polynomials have been introduced.
They fall out as the appropriate polynomials occurring as the
numerators and denominators of (rational) reactance functions

and positive functions respectively. The hierarchical
relationship between the several classes of multivariable
Hurwitz polynomial thus delineated is diagramatically shown
in Figure 3.1, in which an arrow (single or double) points to

subclasses of polynomials, whereas double arrows originate
from classes formed by products of elements of classes to
which they point. A nontrivial result, which proves to be

very useful in theoretical tests for the property of
positivity of holomorphic functions and is formulated in

terms of the behavior of its real part on the distinguished
boundary of the domain of holomorphy has been derived.

finally, in view of its validity in the one-variable case, it
seems plausible to conjecture that given any positive
Uinction with a self-paraconjugate Hurwitz factor in its

denosinatoc it is always possible to extract a reactance from

.t. thus leaving a positive function with scattering Hurwitz
lemrsiantor only. A partial result in this direction has been

~'. sdeo
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CEAPUTR 4

REALIZATION OF STRUCTURALLY PASSIVE I
MULTIDIMENSIONAL DIGITAL FILTERS

4.1.Introduction:

Various synthesis schemes such as the Darlington synthesis

scheme for synthesizing lossless transfer functions as a

cascade interconnection of most elementary lossless building

blocks such as inductors, capacitors, gyrators etc. in the

continuous time domain have now become classical in the

network theoretic literature. The corresponding problem in

the discrete time domain, namely that of synthesizing a

discrete lossless bounded (or positive) transfer function as

a structurally passive interconnection of elementary lossless

building blocks was first resolved via transformation from

prototype problems in the continuous time domain, and the

resulting class of filter structures are now known as the

wave digital filters 1I. Recently, however, successful

attempts to derive these and similar other discrete domain

results without making explicit use of tools of classical

network theory have been made. Notable among these are the

orthogonal filters (2), and the class of filters described in

(31, (4) and in related other publications.

In view of interest in the synthesis of multidimensional

(k-D) structurally passive digital filters, the problem of
synthesis of k-D lossless two-port transfer scattering matrix

via the bisection of a prescribed two-port into a cascade

connection of two lossless two-port sections of smaller
"degree" has been addressed in the continuous time domain in

(5]. An attempt to develop a self consistent theory for the

synthesis of k-D structurally passive digital filters

independent of the continuous time methods have already been

initiated in (6] by discussing the discrete domain stability

.%



properties of a class of multidimensional polynomials. The
present report addresses the problem of synthesizing a k-D

discrete lossless bounded matrix as the transfer function of
a structurally passive two-port digital filter directly in
the discrete domain. Our approach is to bisect the prescribed
discrete lossless two-port into a cascade interconnection of
two discrete lossless two-ports as shown in figure 4.1.
Necessary and sufficient conditions as to the feasibility of

the bisection is obtained. It falls out that in the
one-dimensional (1-D) case the aforementioned bisection is
always feasible. Our discussion in the 1-D context thus
yields yet another algorithm for the structurally passive

synthesis of 1-D lossless digital filter transfer functions,

previously not discussed in the literature.

-

S.
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4.2. Notation, Terminology and Problem rormuation:

We first explain the notation to be used in the rest of the

paper in the following. Notations such as a, b, c will denote

polynomials: a-a(C), b-b(z), c-c(!) in k-variables z -

(sl,z2,...zk). Notations such as nal or degia will denote the

partial degree of a in the variable zi . The compact

notation:

n n nna- a 1 a1Z 2 na2 ... knak will also be used.

-1 ,-1 ,-1 snafinally, ,g* z 2  ,... zk  , A 9 ;._- 2 2

where * denotes complex conjugation. Corresponding notations

for various polynomials other than the polynomial a will also

be used.

A k-D discrete lossless two-port is characterized [6] by an

associated transfer function matrix R as in (4.1) or by a

transmission matrix T as in (4.2).

[Hill- b/&, (H)]12-dazEa/ (4.1a,b)
n a

(H] 2 1 -c/&, (H] 2 2 -- d~z /& (4.1c,d)

[T) 1 -da/c, IT) 1 2-b/c, (4.2a,b)

[T12 1-dz % /c,[T 2 2-&/c (4.2c,d)

where a,b,c are polynomials such that & is scattering Schur

(61, degib~degia, degic~degia for all i-l to k, d is a

unimodular complex constant i.e., Idl = 1 and

a& bB ca (4.3)

Note that (4.1) can be regarded as a discrete k-D
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Counterpart of Selevitch canonical form for the

representation of lossless bounded two-port scattering

matrices, well known in classical network theory.

In more specific terms the problem dealt with in the present

report can be described as follows. Given T as in (4.2), two

unimodular complex constants do, do with d - d'do, and the

polynomial factorization c a coc, along with two sets of

integers n'-(ni,ni....ni) and n'-(n,nj,...nj) such that

degic'Sni. degic"Sn; and naimnl-n for all i- to k, we seek a
factorization T a T'T", where T' and TO are also discrete

lossless two-port transmission matrices with associated

polynomials (a',b',c') and (a,b",c") respectively. in

addition, the requirements degia'Sn and degia"Sn" needs to

be satisfied. Thus, both T' and TO are also required to have

representations similar to those expressed in (4.2). In

particular, the polynomial triples (a',b',c') and (a*,b",c")

are also required to satisfy the condition that &', V" are

scattering Schur, degjb'<degia', degib*Sdegia" for all i-I to

k and (4.4) holds true. The discrete lossless two-ports with

associated transmission matrices T' and TO resulting from the

factorization of the transmission matrix T is shown in figure
4.1.

a'l' - b'5'.c' ' (4.4a)

&aM| 0 b"B" + c"' (4.4b)

It then easily follows by considering representations of T'

and To such as that expressed in (4.2) for T that the

condition T-T'T" is equivalent to the conditions expressed in

(4.5a) and (4.5b) in the following.

a - a'&* a do b'b"z (4.5a)

b o d'a'b" - b'S" (4.5b)

The above considerations motivate the following definition.
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Definition 4.2.1: The pair of polynomial two-tuples (a',b')

and (a*,b*) is said to be a solution to the algebraic

equation if equations (4.4) and (4.5) along with the degree

restrictions degia'Sn! and degia*Sn! for i-1 to k are

satisfied.

We note that in the above definition the degree restrictions

on the polynomials a' and a" are expressed as weak

inequalities rather than equalities as is required by the

solution to the original problem. Also, the restrictions that

the polynomials A, and A" be scattering Schur polynomials are

not imposed at all.

Definition 4.2.2: A polynomial triple (a",b*,b') is said to

satisfy the fundamental equation if (4.6) along with (4.7)

holds true.

d'.ab* - ba" - -b'c c z-" (4.6)

degia"Sni and degib'<n (4.7)

Note that equation (4.6) is obtained by eliminating the

polynomial a' from (4.5a,b) and (4.4b). Obvicusly then any

solution of the algebraic equation also satisfies the

fundamental equation.
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4.3. Solution to the Algebraic equation:

Clearly, any solution to the problem of factorization of T

into T'T" is also a solution to the algebraic equation. The

following theorem shows that the scattering Schur properties

of A' and A" and the degree requirements on a' and a" are

automatically satisfied by any solution to the fundamental

equation, and therefore, any solution to the algebraic

equation is also a solution to the problem of factorization

of T into T'T".

Theorem 4.3.1: If the pair of polynomial two-tuples (a',b')

and (a",b") constitute a solution to the algebraic equation

then the polynomials A' and A" are scattering Schur and

degia'.nj, degia"-n! for all i - 1 to k.

Proof: Consider the rational function defined as:

-(A ')/-I(&&')/] 2(4.8)

where E-(PlP2,.. .k,

and pi-nai-(na,i+nai) (4.9)

Since A is a scattering Schur polynomial, n!+n?-nai, and

factors of a scattering Schur polynomial are also scattering

Schur, the denominator polynomial of * is also scattering

Schur.

Furthermore, straightforward algebraic manipulation of

equations (4.4b) and (4.5) yield the following.

*-(a"/c")(A"/ ")[l-d'(/S/)(b"/a") 1 (4.10)

Since it follows from (4.3) that IB/8I I and lb"/a"IJl for

1Zi 1-1 for i-i to k, an examination n 14.10) yields that

Re* 0 for lz I-, wherever * is well defined. Thus, by
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invoking a result proved in (6) it follows that * is a

discrete positive function. Consequently, the numerator

polynomial of *, in irreducible form, is a widest sense Schur

polynomial. This, however, implies that naimna ,i+na-i for all

i-i to k. The last equality along with the facts that

nlkna,i, nl na.i and nai-n, +nl together imply that n -na. and
SInimnali•

The widest sense Schur property of A' has already been

established. Next, if for some z0 on the distinguished

boundary of the polydisc IziI~l, i-l to k we have a'(zo0 )-O

then from (4.4a) it follows that b'(z 0 )-0, which in turn due

to (4.5a) imply that a(: 0 )-0. Consequently, if A', and thus

a, had a sequentially almost complete set (6) of zeros on

the distinguished boundary then a would also have a

sequentially almost complete set of zeros there, which is

impossible if a scattering Schur. Therefore, A cannot have

sequentially almost complete set of zeros on the

distinguished boundary. The scattering Schur property of A is

thus established in view of results in (5]. Similar

arguments hold for V".

A lossless two-port is said to be an allpass if the

polynomial b associated with it is identically equal to zero.

.%j

We will need the following result as a preparation for the

rest of the discussions to follow.

Theorem 4.3.2: Any discrete lossless two-port transmission

matrix T can be factored as T-TfToT r' where TfV TO, Tr are

also discrete lossless two-port transmission matrices such

that Tf and Tr are allpass and if T0 has representation in

terms of polynomials a, b, c as in (4.2) Ahen the polynomial
-aa is relatively prime with b as w,ll as 1=-a

In physical terms the above factorizaticn amounts t"
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extraction of discrete lossless two-port sections from the

front and rear end of the prescribed transmission matrix.

Thus, without loss of generality it will be assumed in all

forthcomming discussions that the polynomial a is relatively

prime with b as well as with 5z-a .

.
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4.4. Solution to the fundamental equation:

We will need the following lemmas.

Lemma 4.4.1: If the polynomial a is relatively prime with b

as well as 52 then neither a nor A can have a factor in

common with the polynomial z!!"c'e".

Proof: Since A is scattering Schur & cannot have zi as a

factor for any i. Also by rewritting equation (4.3) along

with c-c'c* in the form of (4.11)

aA-b(5z a) + (z2'c')(c""z!!) (4.11)

it can be seen that if & or a had a factor in common with the

polynomial (c*Lk ! then it would also have a factor hn

common with the b( 5z
- a ) i.e., in common with either b o- z- a

both of which is Fuled out by the fact that a is relatively

prime with b and z- .

Lemma 4.4.2: If the polynomial triple (",0",01')is a solution,:$i

to the fundamental equation then degiO" nj. Furthermore,

there exists a polynomial a, given by (4.12) such that the

polynomial triple (B"z- ,F"z -&'d') is also a solution to

the fundamental equation. Also, we have that degia'Sn i for

all i-1 to k.

Proof: The fact that degiO n; follows directly from the

fundamental equatio" for the trip'e, Next, tv

.3
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z (a&-d'bO")-fz_ c'a)(Valc' ~pbZaa (4.13)

Since the left hand side of (4.13) is a polXnomial, due to

lemma 4.4.1, A must divide (a"d'c'+z_!! O'b)z-a. Thus, al in

(4.12) is a polynomial. The fact that degia'<nf then follows

by considering the degree restrictions on c', c*, a", b, and

01 and a.

Lemma 4.4.3: IA the polynomial a is relatively prime with b

as well as 5z aand (a"0j0j and (a" 0" 01) are two
polynomial triples satisfying the fundamental equation then

the rational function given in (4.14) is a constant.

(~1z~~2/(~ "~) (4.14)

Proof: By multiplying the fundamental equations for

(C&I,01, 0j) and (ati,01, 0j) respectively by a" and (-ct) and
adding the resulting equations one obtains equation (4.15).

d' aP3-CLO" -( iC"-aI~j (zno ~a"/a (4.15)

* Since the lefthand side of (4.15) is a polynomial, by

4 invoking lemma 4.4.1 it then follows that a must divide the

polynomial P-O -a~) Since degiP~n!+n"-n j-degia for all

i-1 to k we have that P/a is a constant. The result then

follows by noting that the expression in (4.14), in view of

(4.15), is equal to (Pd'/a).

Lemma 4.4.4: 'A the polynomial a is relatively pri.me wit!h t

as well as B: , and (s"*, 0", 0') is a polynom. tzr._'e

satisfying the fundamental equaticn then the expressilr. _-.''e-

in (4.16) is a constant.

& % *



Proof: Follows from lemma 4.4.2 and lemma 4.4.3.

Lemma 4.4.5: If the polynomial triple ( ",0",0') is a

solution to the fundamental equation then there exists an a'

as given by lemma 4.4.2 such that (pa"+qz-"B", pa" qz-"&",

pj'-qdc') is also a solution to the fundamental equation,

where p and q are arbitrary complex numbers.

Proof: Obviously follows from lemma 4.4.2.

I
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4.5. Factorization of the discrete lossless two-port

transmission matrix:

Two polynomial triples (ajOjOP and (a0,0j) each

satisfying the fundamenatal equation will be said to be

linearly dependent if there exists constants p and q not
simultaneously zero such that pa"+qacupO"+ qO wp0i+q0i-O.

Also, a solution (&',0",0') to fundamental equation will be

said to be nonsingular if a"V,00"O".

The following two theorems constitute the major results of
this report.
Theorem 4.5.1: Assuming hhat the polynomial a is relatively
prime with b as well as 5! a, the problem of factorization of
discrete lossless two-port transmission matrix T admits a

solution if and only if there exists a nonsingular solution

(W,",0') to the fundamental equation.

Proof: Necessity is obvious. If (m",0",0'1 is a nonsingular

solution to the fundamental equation then due to lemma 4.4.5,
a"-pc"+qz-n" - , b-=pO"+qzY"- , b'-pO'-qdc' is a solution to

the fundamental equation. Straightforward algebraic
manipulation then yields that

(a"I"-b"D")/c"Vm(IpI 2 -1q1 2 )K (4.17)

where K(("&"-0"B")/c" " (4.18)

Since due to lemma 4.4.3 and nonsingularity of Ic",0",0'), K

is a nonzero constant, by proper choice of p and q in the
right hand side of (4.17) it is possible to have

Furthermore, there exists a' such that (V"","", -a'd),

by virtue of lemma 4.4.2, satisfies the fundamental
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equation. it can then be verified via routine algebraic

manipulation that the pair of two-tuples (a',b') and (a",b")

satifies the algebraic equation, and thus, due to theorem

4.3.1, is a solution to the problem of factorization of T.

Theorem 4.5.2: Assuming that the polynamial a is relatively
prime with b as well as with 5z-a the problem of

factorization of discrete lossless two-port transmission

matrix T admits a solution if and only if there exists two

linearly independent polynomial triples (a,0,0), i-1,2

each of which satisfy the fundamental equation.

Proof: Necessity is obvious. If one of the solutions

(aii ,i), i-1,2 is nonsingular then sufficiency follows

from theorem 4.5.1. If both solutions are singular then the

triple (aw,bw,b') obtained as: a"-paL+qO&, b"-p0P+q03,

b'-pOI+qOi, where p and q are complex numbers, satisfies the

fundamental equation. Algebraic manipulation then yields that

(a"V"-b*5")/c"a" - L + L (4.19)

L - p *(~0~)ce (4.20)"2 1*

By invoking lemmas 4.4.2 and 4.4.3 it then follows that L in

(4.20) is a constant, and thus, L-L*. Furthermore, by

following arguments similar to those in [5] it can be proved
via the use of results in [7] that L*0 if p*0 and q*0. (The

details of this derivation is left out of here for the sake

of brevity). Consequently, by proper choice of p and q in

(4.19) and (4.20) it is possible to have a"V"-b"5"-c"a". The

rest of the proof follows by imitating the last paragraph in

the proof of theorem 4.5.1.

The fundamental equation (4.6), when considered as a set of

linear simultaneous equations involving the coefficients of

the polynomials a", b", b', along with the upper bounds on

their degrees, turns out to be overdetermined in general.
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nore explicitly, we note that the unknown polynomials a", b"

and b' contain a total of u unknown coefficients, whereas the

total number of linear simultaneous equations can easily be

found to be equal to e, u and e being as given in (4.21) and

(4.22) below.

k k
u - 2 i (nl+l) + 9 (nr+l) (4.21)

i-l i-l 1
k

e - N (2n? + n! + 1) (4.22)
i-l I I

Since for k>l we have e>u in a generic situation a solution

to the problem may not exist.

furthermore, in order for the digital network so synthesized

to be 'computable' it may not contain delay free loops

arising from cascading of two elementary sections. In spite.

of the fact that it is known (8) that this problem can always

be circumvented, at least in the one-dimensional case, by

incorporating digital equivalents of unit elements it is of

interest to note that by properly utilizing the flexibility
in the choice of p and q in (4.20) it is always possible to

avoid the occurrence of such delay free loops in the filter

structure. This point is further elaborated in the following
section.
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4.6. One-dimensional synthesis as a special case:

In the one-dimensional case i.e., if k - 1, a closer

examination of (4.21) and (4.22) reveals that we have u-e-2,

and, therefore, there are two more unknown coefficients than

the number of linear equations in the set of linear

simultaneous equations which determine the solution to the

fundamental equation. Thus, there are at least two linearly

independent solutions of the fundamental equation, and in

view of theorem 4.5.2, the problem of factorization of T

always admits of a solution. Consequently, structurally

passive synthesis for T is achieved by performing a sequence

of further factorizations of T' and T" into discrete lossless
transmission matrices of progressively lower complexity,

until a stage is reached when each of the resulting
transmission matrices cannot be factorized any further. This

latter situation corresponds to the case that each of the
two-ports resulting from the decomposition satisfy deg a - 1,
deg c S 1 and deg b 1. However, if the specified two-port

transmission matrix T has real coeifficients for its
numerator and denominator polynomials and realization
involving only real multipliers are sought then the
constituent two-ports may also be of the type deg a - 2, deg

c - 2, and deg b < 2. Two-port sections of the above types
will be called elementary sections and can in turn be

realized in structures possibly other than the cascade

structure by exploiting synthesis techniques as discussed,

for example, in (4].

To address the issue of absence of delay free loops at the

junction of the two-ports associated with T' and T" it may

be noted that the only restriction governing the choice of

the numbers p and q is that the right hand side of (4.17) or
(4.19). be equal to one. This flexibility in the choice of p
and q may thus be exploited to make b"(O) - 0, which ensures
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the absence of the delay free loops of the type mentioned

above. Furthermore, since & is Schur and thus &(O)*O, it

follows from (4.5b) that if b(O)-O and b*(O)-O then b'(O)-O.

This fact gaurantees that the original two-port can be

decomposed into cascade interconnection of elementary

two-ports in such a way that the b-polynomial associated with

each of the constituent two-ports, except possibly the one at

the extreme left, is equal to zero for z-O. Absence of delay

free loops from each junction Is thus gauranteed.

Realizations for elementary sections with deg a-1, deg c S 1,

deg b 1 and b(O)-O as interconnections of Gray-Markel

sections and delays are shown in figures 4.4 and 4.5.

Gray-Markel sections of two different kinds used in these
figures are shown in figures 4.2 and 4.3 An elementary

section with deg c - 2, deg a - 2, deg b S 2 and b(O)-O is

shown in figure 4.6. Thus, an arbitrary lossless two-port can

indeed be synthesized as a cascade interconnection of these

elementary sections only. It turns out that elementary

sections just referred to are exactly the same as those

discussed in the literature [11,[21,C31.
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4.7 Conclusions:

A simple algorithm involving the examination of rank of a set

of linear simultaneous eqations for studying the

synthesizability of an arbitrary multidimensional lossless

two-port in a cascade structure has been derived via

factorization of the associated transmission matrix T. It

turns out that under a generic situation synthesis in a

cascade structure may not be feasible. In the special case of

one-dimension the algorithm provides a new method of

realizing structurally passive filters directly in the

digital domain. The problem of multidimensional synthesis,

though not necessarily in cascade structure, can also be

addressed via factorizations of hybrid matrix or the tranfer

function matrix associated with the lossless two-port. The

class of multidimensional lossless two-ports thus

synthesizable along with the class identified in the
present study would thus broaden the whole class of
synthesizable multidimensional structurally passive lossless
two-ports. It may be remarked that even though in the k>l case
synthesis may not be feasible for an arbitrary discrete

lossless T, the possibility of synthesis for special classes

of discrete lossless T is by no means ruled out. This is

especially true in view of synthesizability of certain
classes [91, (101 of two-dimensional continuous time systems
arising in studies of lumped-distributed netwoks. The class
of multidimensional discrete lossless two-port transmission
matrices T, which admits of such synthesis remains, however,

to be identified.
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CHAPTER 5

MULTIDIMENSIONAL INTERPOLATION AND DECIMATION

SCHEMES FOR FAST IMPLEMEMNTATION

5.1. Introduction

The processes of sampling rate increase and sampling rate
reduction commonly referred to as interpolation and
decimation, are required whenever it is necessary to

change from one sampling rate to another. The fact that
many commonly encountered one-dimensional signal
processing tasks such as speech processing, single side
band frequency multiplexing require the processes of

sampling rate change is now well known (3]. Similarly a
large number of multidimensional signal processing (5]
tasks also require the operation of digital interpolation
and decimation. Such application areas include
transmission of television pictures (13), antenna
beamforming [5], target tracking [11, astronomical data
processing [171 geophysical signal processing (16), and
medical tomography [91. We point out exactly how the

specific problem of multidimensional sampling rate
alteration enters into some of these applications. In
radio astronomical observations it is often desirable to
estimate the radio brightness of the sky at intermediate
points from observations made by directing the measuring

antennas at a regular array of points in the sky [17]; in
the problem of transmission of television pictures
efficient coding schemes require that the time-varying
image signal be known between two successive picture
frames [131; whereas in X-ray computed tomography the

problem of interpolation manifests itself when a higher
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resolution in reconstruction is necessitated (91. Similar

other examples of need of multidimensional interpolation
as well as decimation schemes can be drawn from these and

other application areas mentioned earlier. A feature

common to all of these multidimensional processing tasks

is the enormous amount of computational requirement..This

fact becomes especially prohibitive to practical

implementation if real time or adaptive applications are

called for.

On the other hand, recent advent of VLSI technology has the

potential to make such computation intensive

multidimensional signal processing tasks by increasing the

throughput rate via utilization of new concepts such as

parallelism, pipelining, concurrency modularity of

implementation etc. (83. The more recent optical
technologies (21 provide yet another potential means for

highspeed implementation of many multidimensional signal

processing algorithms. In this context, the need for

reconsidering existing signal processing algorithms as

well as that of designing algorithms for previously
intractable problems have already been recognized in

general 111, and both new computational schemes and their
implementations in hardware for solving specific

multidimensional signal processing tasks are now beginning

to emerge [61 (121. It is in this perspective that the
general problem of designing an algorithm for

interpolation and decimation of a broad class of

multidimensional signals is investigated in the present

report.

For the type of applications under consideration, it is

important to understand the processes of interpolation and

decimation from the point of view of digital signal
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processing rather than from numerical analysis standpoint.

For example, linear interpolation is not satisfactory in
most digital signal processing tasks. In classical
numerical analysis, the inadequacies of polynomial
interpolation schemes such as the mul-tidimensional
Lagrange type interpolation method lead to the use of
higher order polynomials, the inappropriateness of which
has been pointed out in (3] in the one-dimensional
context. In the present study we consider the problems of
interpolation and decimation based on the frequency domain
description of the multidimensional signal. It then turns

out that, as has already been discussed in the literature
for one-dimensional signals (3], the problem of
interpolation and decimation of multidimensional signals
can also be interpreted as linear filtering operations in

the frequency domain. More importantly, the filtering

scheme leads to computational structures, which is highly
modular and derive full advantages of parallel and
pipeline implementation. Performance of the computational

algorithm so designed is also examined by experimenting

with both real and synthetic two-dimensional signals.

In section 5.2 the notation, terminology and the sampling

scheme to be used for the rest of the report is

introduced. The problems of interpolation and decimation
are formulated, and the filtering schemes leading to their

solution are discussed in section 5.3. The fact that such
computational schemes can be implemented by exploiting the
concepts of both parallelism and pipelineability forms the
contents of section 5.4. Some filter design examples of
interpolators and decimators and their performances on
image data are presented in section 5.5 and in section 5.6
conclusions are drawn.
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5.2. Multidimensional Periodic Sampling

Of the several ways to generalize [51 one-dimensional

(1-D) periodic sampling schemes to multidimensions (N-D)

(N 2), the most straightforward, although not the most

efficient [151, is periodic sampling in rectangular

cartesian coordinates, which we will simply call

rectangular sampling.

In what follows underlined characters will be used to

denote column vectors and the notation "'" will be used to

denote the transpose of a vector. For example,

T'-(T1,T2 ,...TN, where T is a column vector. Similar

notations will be used for variables such as t, 2,W, W,

n, k etc. the later physical meanings of which will be

made clear when the context arises.

If xa(t), is a multidimensional continuous signal, the

discrete signal x(n) obtained from it by rectangular

sampling is given by:

x(n)-xa (nlTl,n2T2,...nNTN) (5.2.1)

where TIT 2 ,...TN are positive constants known as the

sampling intervals or periods in the respective sampling

directions.

The N-D Fourier transform Xa(9) of the continuous signal

xa(t), and its inverse are given in (5.2.2a,b).

- -J(2.t') 2 - j(2.t')

Xa(Q)-f Xa (t)e dt; xa (t)-(1/4n )LXa()e- dt

(5.2.2a,b)

The discrete sequence x(n) obtained by sampling Xa(t) at

spatial locations ti-niT i , i-i to N can then be obtained
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as in (5.2.3a), whereas the Fourier transform of x(n) is

given by X(w) in (5.2.3b).

x(n)-(/4n2) xa (Q)e-j ( t ' ) dQ; x()x(n)e
on 

(5.2.3a,b)

We assume that the signal xa(t) is bandlimited. More

specifically, we assume that the Fourier transform Xa(Q)

have a support which is contained in the hypercube

19,1<W,<- for i-1 to N in the N-dimensional frequency

space i.e., Xa(a)-0 for 12IQjW i , i-I to N. It then follows
from the multidimensional version of the Nyquist sampling
theorem (51 that the continuous signal xa( ) can be
recovered from the discretized multidimensional signal
x(n) according as equation (5.2.4), in which Ti</Wi-

N
x ( )ME x(n) 2 (sin(n/Ti)(ti-niTi))/(u/Ti)(ti-n Ti)1n i-l (5.2.4)

Equations (5.2.1) and (5.2.4) taken together, form the
basis of the multidimensional sampling theorem in
rectangular cartesian coordinates.
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5.3. Multidimensional Sampling Rate Conversion

The process of sampling rate conversion is one of

converting the sequence x(n) obtained from the sampling

of the bandlimited signal xa(t) with periods Ti, to another

sequence y(m) obtained from sampling Xa(t) with periods Tn

for each i - 1 to N. Conceptually at least, the most

straightforward way to perform this conversion is to

reconstruct Xa M) (or the low-pass filtered version of it)

from the samples of x~n) and then resample xa t) (assuming

that it is sufficiently bandlimited for the new sampling

rate) with periods T1, i-i to N to give y(m). For any M,

the value of y(m) can be then obtained as:

y(m)-xa () for t-m=MTF, i-l to N (5.3.1)

By substituting (5.3.1) into (5.2.4) and renaming the
variables n as k, we have:

N
y(m) - Z x(k) R sin(n((miTj/Ti)-ki))/((miT/Ti)-ki)

k i-l (5.3.2)

5.3.1 Interpolation of Multidimensional Signals

If the sampling rate in the i-th dimension is increased by

an integer factor Li, then the new sampling period T1 for

i-l to N are given by

Tj/Ti-l/Li (5.3.3)

This process of increasing the sampling rate

(interpolation) of a signal x(.) by Li implies that we

must interpolate (Li-1) new sample values between each

pair of sample values of x(.). By substituting (5.3.3)
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into (5.3.2), (5.3.4a) is obtained, in which h1(s1 ) for
integer values of Si, i-i to N are given in (5.3.4b).

N
E~) x(k) A h.(m.-k.iL.); h.(s.)-sin(xsi/Li)/(xsi/Li)
k i-li 1 1 11 (5.3..4a,b)

An alternative formulation of equation (5.3.4a), as given

in (5.3.6), can be obtained via the introduction the

change of variables:
ki-tmi/LiJ -nio for i-1 to N (S.3.5)

where LuJ denotes the integer less than or equal to u.

N
y(m)- I x(1rn/L-nJ) 11 hi(mi-1m1 /L.J.L.+n.L.)

N
-Z A hi(niLi+m i@Li)x( LalL-ni) (5.3.6)
n i-i

where a iOL i denotes the value of a i modulo L i for i- 1 to
N and the notation Lm/L-nJ is taken to mean the N-tuple of
integers s-( 'l"s2P... N ) with asimLmi/LiJ-niF i-l to N.
Equation (5.3.6) expresses the output y(.) in terms of the
input x(.) and the set of one-dimensional sequences h i(.)
i-l to N, as given in (5.3.4b). Thus, in a compact
notation y(a) can be written as in (5.3.7a), where g a(n)

is as expressed in (5.3.7b) for all N-tuple of integers m
and ni.

N
y(m)-z g (n)x( LulL-ni); g,(n)- I h i(n iL i+amiOL i)

n i-i (5.3.7a,b)

Note that g a(n) is periodic in m.i with period L . for each
i-I to N. Fu~thermore, by referring to (5.3.7b) it follows
that g3 (n) is a product separable function, and each of
its faEtors are periodic in m. with respectiv'e periods L.

1
i.e.,
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N
g3 (2)- I gm (ni) ; gm (ni)-hi(niLi+mi@Li) (5.3.8ab)

where (5.3.8b) holds for each i-i to N. Thus, by using

(5.3.8a), (5.3.7a) can be written as (5.3.9).

ylm)- g_ l (_ gm (n 1)x(Lm/L-nJ) (5.3.9)-- nN--M MN nI

An alternative formulation of equation (5.3.9), which
yields the implementation of the equation in digital
filtering terms is given in equation (5.3.10).

1i)
Y (m ,-.-Mi, i+10,...-vN )

* (i-i)
n !_g gI (ni)Y (m i f''m i-l'Lmi/Lij-ni' i~l''''vN)

n1 -- i (0) (5.3.10)
for lji~k, where y (.) - x(.)

Note(N hat (5.3.10) together with (5.3.9) yields that y(.)
- y (.). Thus, output y(m), as given in (5.3.9), can

also be computed via (WIe recursive construction of the

intermediate signals y (.), for 1 < i IN. Furthermore,

for each i in 1 S i S N, (5.3.10).can be interpreted as
the input-output equation of a one-dimensional spatially
varying filter operattSl)on the i-th dimension of the

intermediate signal y (.), whose impulse response is

periodically space varying with a period equal to Li. A

closer examination of (5.3.10) reveals that (5.3.10) can
be digitally implemented in N stages as shown in Figure
5.1, where the i-th stage represents a set of one-

dimensional filters oring on the i-th dimension of
intermediate signal y (.), one for each value of the
indices mi...mi,- V i+L,... Vk to produce the next

intermediate signal y (.). In the special case, when N-2
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i.e., for two-dimensional image signals, for example,

(5.3.10) can be written as follows.

y)(1l) 2 z g* (nl)X(Lml/LJ-nt' 2) (5.3.11)n. U-4

y(ml1m2 )-yl2l(mlm 2 )

-2 g3  n2 )yl)(inl,Lm2/L2J-n2 ) (5.3.12)

n2 2
Equation (5.3.11) represents a one-dimensional
interpolator which interpolates the rows of the given

input image x(.). This row interpolation is performed on

each row of the input signal x(.)*and the results are

stored in an intermediate image signal y 1 )(m1 01, 2 ). The

second step is an implementation of (5.3.12), which

amounts to performing the operation of interpolation on

the columns of the intermediate image y(l)(.). The entire
process, therefore, can be implemented in two stages of
1-D interpolations. It must be noted that by rewriting in
(5.3.9) the order in which the summations over different
indices are considered, it is also possible to perform the

column interpolations first and the row interpolations

next.

5.3.2 Decimation of Multidimensional Signals

The process of reducing the sampling rate (decimation) of

x(n) by an integer factor H in the i-th dimension, is

considered next. If TI/Ti-ML/1 for i- 1 to N then the new

sampling rate is given by rl-l/T-I/miTi-Fwf/M.

In order to lower the sampling rate and to avoid aliasing
at this lower rate, it is necessary to filter the signal

x(n) with a digital low-pass filter whose unit impulse
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response is denoted by h(n). The sampling rate reduction

is then achieved by forming the sequence y(m) by saving

for each i in I I i < N only every Mi-th sample in the

i-th dimension of the filtered output.

If h(.) denotes the N-D impulse response of the ideal

low-pass filter then it follows that the signal at the

output of the low-pass filter is given by:

w(n)- Z h(ic)x(n-k) (5.3.13)

Furthermore, if y(3) is obtained by considering every

Mi-th sample in the i-th dimension of the signal w(n) then

y(3n) is given by (5.3.14), where the notation x(M.rn-k) is

taken to mean x(H lm1-k1,M2 m e k2 ...... Nk N)'

y(rn)m(v(n)J)- ME- h(k)x(M.m-k) (5.3.14)
- i Mmini,

If the frequency response of the ideal low-pass filter

having impulse response h(n) is given by (5.3.15) then
h(n) is product separable (5) and can be written as in

1 for licoxia/ 1 for i- I. to N

Hw-i (5.3.15)

0, otherwise

N

.i!hl(ni); hi(ni)msin(xni)/xni for 1- 1 to N

.i-1(S.3.16ab)
Making use of (5.3.16) in (5.3.14) it follows that the

output signal from the entire decimator y(rn) can be
written as in (5.3.17).

y(rn)-E h'(kk) ... E h(kl)x(M.m-k) (5.3.17)
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Furthermore, as for the interpolator we note that the

output signal y(r) can be computed via the recursively

defined intermediate signals y(i)(.), 1 < i < N as given

in (5.3.18) below, where y(O)(.) - x(.). We then have

y(lMlYNl ().

y(i)(ml,.,...mitVi~l,..VN)M

Z hD(kily(i-l)(l, ... milNmi-k iNvi~l ... vN) (5.3.18)

Clearly, for each i equation (5.3.18) represents the

operation of performing 1-D decimation in the i-th

direction of the intermediate signal y(i-1)(.), as a

result of which the next intermediate signal y(i)(.) is

obtained, and the computation of y(i)(.) in (5.3.18) for

values of i- l,2,...N correspond to the implementation of

N stages of such 1-D decimators in succession. ror

two-dimensional signals, for example, i.e., if N-2 the

entire operation can be interpreted as first decimating

the rows of the discrete signal and then decimating the

columns of the resulting signal obtained from the output

of the first stage.

-110-



5.4. High Speed Implementation of Interpolators and

Decimators

We note that (5.3.10) and (5.3.18) are the basic equations

for implementation for N-D interpolators and decimators,
which can be implemented in N decoupled stages. Each such

stage, in fact, consists of a set of 1-D interpolation or
decimation filters. In this section the fast computational

scheme associated with (5.3.10) and (5.3.18) that results

in this highspeed implementation will be discussed. It

will be shown that the set of 1-D interpolators as well as

the decimators just referred to can be implemented by

using certain types of 1-D interpolators or decimators

known to be the polyphase filters (31 as our basic module

of implementation. Only nonrecursive implementations of

this basic module will be sought in the present study.

We first consider the i-th stage of implementation of the

interpolator. Similar considerations apply to each such *

stage. The impulse responses ga (ni) of the 1-D filters

mentioned in the previous paiagraph, by virtue of

equations (5.3.8b), are periodically shift varying in m
with a period Li. Due to this, for any fixed set of values

of ml,...mi l'li+l,... VN the computation of y(i)(.) can be
carried out via the use of Li different shift-invariant

filters in such a way that each filter provides every

Li-th sample of y(i)(.) in the i-th dimension.
Consequently, for a given value of i as shown in Figure
5.3, the entire filtering operation represented by

(5.3.10) can be implemented as a parallel interconnection

of Li different shift invariant filters having y (i-)(.)
at its input, followed by the process of sampling rate

expansion by a factor of Li i.e., insertion of (Li-l)

- 1l1
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zeros between two consecutive samples in the direction m V

Finally, for each j-1 to (Li-1) the output from j-th such

shift invariant filter is shifted j space units, and the

resulting signals are added to obtain y(i)

Similar implementational considerations also apply to each

of the N stages of the decimator. By making the

substitution kimriMi+Pi in (5.3.18) it follows after some

algebraic manipulations that (5.4.1) to m (5.4.3) hold

true.

y )(ml,...mi,vi+l,...vN)

Mi -(i-l)

i-O ri0 i (r0yi (m i'mi-lmi- riIVi+l** VN)
Pi - r iW-M(5.4.1)

y(i-l)(l m- N
where y ( "''(..mi-omi-rivi+l,.'"

- y(i-l) (mi, ...mil,miMi-Pi,Vi+1,...VN) (5.4.2)

and pPi(ri)-h'(miMi+Pi) for Pi-O,1,...(Mi-1) (5.4.3)

Thus, for fixed integer values of mi...mi_ , Vi+l,...N
(5.3.18) or equivalently (5.4.1) to (5.4.3) can be
implemented as a parallel connection Mi 1-D filters, one
for each value of 01, and having impulse responses as
given in (5.4.3). Note that the input y(i-l)(.) to the

Pi-th such filter is obtained from y()i) by shifting
the samples by an amount pi and then by considering only
every Mi-th sample. The resulting scheme for

implementation is shown in Figure 5.4.

It is important to notice that for int eolation as well

as for decimation the computation of y (.) in (5.3.10)

and in (5.4.1) for different values of mi... Mi_ 1 ,
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V i+e,.VN are completely independent of one another, and

thus can be. carried out concurrently. For each value of

the set of (N-l) tuples just mentioned it would thus be

necessary to have an identical copy of the filter

described in Figures 5.3 or 5.4 the required number of

such copies is obviously determined by the size of the

(i-l)
support of the signal y (.).

Furthermore, in spite of the fact that as shown in Figure
5.1 and 5.2 the entire scheme is to be implemented in N

decoupled stages, a thorough examination of the
computational scheme reveals that it is at least in
principle, possible to begin partial computation of

(i+l) (i+2)
intermediate signals y ('-N) y (.).... etc. even

before the computation of y (.) is completed, thus
potentially resulting in further speedup in arithmetic. To

exemplify this situation in the 2-D case, it may be
noticed that since the copies of row interpolators all
operate in parallel - each on one row of the input image -

if each row interpolator is made to sequentially process
the rows from the same edge of the picture frame then as

computati ?) proceeds, the columns of the intermediate
signal y (.) begin to make themselves available to the
column interpolator(1 ?f the succeeding stage even before

the computation of y (.) is completed.

In what follows the implementation of the 1-D shift

invariant filters g* (ni) for the interpolator or the

p,(ri) for the decilators will be sought in direct form
no recursive (FIR) structures. Other structures can be
also used, but our choice is motivated by the particular

nature of the interpolation and decimation filters, which
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makes the design of FIR structure especially simple as

well as by the fact that such structures can be

conveniently implemented in systolic (pipeline)

architecture (2] (101. Figure 5.5 shows an example of such

an 1-D nonrecursive structure, which occurs in each branch

of the polyphase filters for the case when the filter

order is equal to N0 . Since the design of such 1-0 filters

is extensively documented (4) in the literature we shall

not undertake the discussion of this issue here, but only

highlight the fact that by multidimensional sampling rate

alterations can be performed at a higher speed by

exploiting in parallel several copies of the type of 1-D

filter structures discussed in existing signal processing

literature. Reduced computation time may thus be achieved

at the expense of increased amount of hardware

requirement. Furthermore, it may be noticed that for the

implementation schemes under consideration the entire

interpolator or decimator have a high degree of

modularity.
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5.5. Design examples in two-dimensions.

It follows from equations (5.3.8b) and (5.4.3) that the
impulse responses gm (ni) and pP (ni) which constitute the
respective branches if the 1-D pilyphase filter structures

for the interpolator and the decimator are space shifted

versions of impulse response of an ideal low-pass filter.
In the following design examples the window method of

designing FIR filters was used for realization of the
impulse responses just mentioned. The Kaiser window was

used for each of the following examples, in which 6-ripple

in the passband and stopband from ideal response;

Wc-highest frequency of interest in the input signal;
OPMpassband edge frequency; wsmstopband edge frequency;
and No- required filter order. The details of design can
be found in (14].

Interpolator: L-2.

The following choices are made 6-0.1, wcm.651, -w c/2L,

Ws-m/L. Then N0-5. The resulting polyphase filter was used
in each of the two stages of implementation. The
performance of the interpolator was tested for three
different test signals: (SI) x(nl1 n2 )-sin(r)/r, where

22
r-v'(u 2v ) with u, v= 0,±l, +2,...±25 as shown in Figure
5.6a; (S2) the "Jet" image of size 64 x 64 pixels, with 4
bits/pixel resolution as shown in Figure 5.6b; and (S3)

the "Saturn" image of size 64 x 64 pixels, with resolution
4 bits/pixel as shown in Figure 5.6c. The interpolated

signals are shown in Figures 5.7a, 5.7b and 5.7c

respectively.
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L-3. Again 6-0.1, wc-.65n, wp-w c/2L, ws-n/O.8L, N0-5, and

Figures 5.8a, 5.8b, and 5.8c show the result of the
interpolation scheme corresponding to input signals Si, S2

and S3 respectively.

Decimation: M-2.

The following parameters were chosen for each branch of

the polyphase filters of the basic module for each stage.
8-0.7, wcm.6 5m, wp-wc/l.3M , w-/M. Consequently N0 -9. The

composite filtering scheme was tested on the following set
of test signals. (Ti) x(n1 ,n2 )-sin(r)/r, where r-v(u 2+v2),

u, v- 0, +1, +2,...±75 as shown in Figure 5.9a; (T2) the
128x128 pixel, 4 bits/pixel =Jet = data as displayed in
Figure 5.9b and (T3) the 128x128 pixel, 4 bits/pixel
*Saturn" data as displayed in Figure 5.9c. The respective
decimated signals are shown in Figures 5.10a, 5.10b, and

S.10c.

M-3. Here 6-0.1, wcM.6 5M, Wp-W c/2L, ws-n/.8L. Consequently
N0-5. The input signals are: (Ul) same as in (Ti) above;
(U2) the 192x192 pixel, 4 bits/pixel "Jet" data of Figure
5.8b and (U3) the 192x192 pixel, 4 bits/pixel "Saturn"
data of Figure 5.8c. The corresponding decimated signals
are as shown in Figures 5.10a, 5.10b and 5.10c

respectively.
All progams were written in a DEC10 computer in sequential
mode as opposed to parallel/ pipeline modes suggested in

the present study.
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5.6. Conclusion

Motivated by practical applicatiohs, a highspeed computing

scheme for the interpolation and decimation of a broad

class of multidimensional signals, which can potentially

derive advantages from parallel, pipelined and modular

implementation has been proposed. Only interpolation or

decimation by integer factors are discussed, but sampling

rate alterations by non-integer rational factors can also
be performed via the techniques discussed by cascading in

two successive stages interpolators and decimators of the

type discussed here. The computational scheme is based on

the frequency domain description of the signal, and uses
one-dimensional interpolation or decimation filters as a

basic module for implementation. Only nonrecursive
implementation of this basic module has been considered in

the present study. Apart from the ease of design and
convenience of pipelineability, the choice of such

structure may have advantages in applications such as
image processing, where linear phase is a highly desirable

characteristic of the processing scheme. The signal has
been assumed to be sampled according to the rectangular

cartesian sampling scheme. Other sampling geometries as
multidimensional (N>2) generalizations of the hexagonal

sampling scheme (15] prove to be more economical in terms

of the number of samples per unit volume required to
represent a bandlimited signal. Interpolation and

decimation schemes for multidimensional signals sampled in
such geometries and their implementation in currently
emerging highspeed architectures remain, however, to be

investigated.

A

-117- i

a~ ~ -



References

(] L. T. Bruton and N.R. Bartley, The enhancement and

tracking of moving objects in digital images using

adaptive three-dimensional recursive filters, IEEE

Trans. on CAS, vol.33, no. 6, pp. 604- 612, June

1986.

(21 H. J. Caulfield, S. Horwitz, G. P. Tricoles and

William A. Von Winkle (ed.), Special issue on

optical computing, Proc. IEEE, vol.72, July 1984.

(31 R. E. Crochiere & L. R. Rabiner, Multirate Digital

Signal Processing, Englewood Cliffs, N.J.,

Prentice-Hall, Inc., 1983.

(4] R. E. Crochiere & L. R. Rabiner, Optimum FIR

digital filter implementations for decimation,

interpolation, and narrow band filtering, IEEE

Trans. Acoust., Speech Signal Process., Vol. ASSP

23, No. 5, pp. 444-456, October 1976.

(51 D.E. Dudgeon and R.M. Mersereau, Multidimensional

Digital Signal Processing, Englewood Cliffs, N.J.,

Prentice Hall Inc., 1984.

(6) M. Fortier, S. A. Sabri, and 0. Bhagat,

Architecture for VLSI implementation of movement

compensated video processors, IEEE Trans. on CAS,

vol.33, pp. 250-259, February 1986.

(71 S. Haykin, Array Signal Processing, Prentice Hall,

-118-

-a, - -.V



1984.

(a] L.S. Haynes (ed.), Special issue on parallel

computing, IEEE Computer, vol 35, January 1982.

[93 G.T Herman, Image Reconstruction From Projections,

Springer Verlag 1979.

(101 H. T. Rung, The Structure of parallel algorithms,

Advances in Computers, vol.19, Academic Press,

1980.

[ll S. Y. Rung, H. J. Whitehead and T. Kailath (ed.),

VLSI and Modern Signal Processing, Prentice Hall,

1985.

1121 B. G. Mertzios and A. N. Venetasanopolous, VLSI

implementation of 2-D digital filters via

two-dimensional filter chip, IEEE Trans on CAS,

vol.33, pp.239-249, February 1986.

(131 A.N. Netravali and a. Prasada, The special issue

on communications systems, Proc. IEEE, pp.

499-501, April 1985.

(141 M. Omrani and S. Basu, Two-dimensional sampling

rate alteration via one-dimensional techniques,

Technical Report No. 8616, Stevens Institute of

Technology, June 1986.

(151 D.P. Petersen and D. Middleton, Sampling and

reconstruction of wave-number limited functions in

N-dimensional Euclidean spaces, Information and

. -

-119-

N$.



control, 5, 279-323, 1962.

(161 E.A. Robinson and Treitel, Geophysical Signal

Analysis, Prentice Hall, 1985.

[171 H. Rowe, Spatial filtering radio astronomical

data: one-dimensional case, AT & T Bell

laboratories technical journal, volume 63, no.9,

pp. 1997-2031, November 1984.

-120-



CHAPTER 6

CONCLUSIONS I
Simple and rigorous proofs of results on tests for the
property that a multivariable polynomial be devoid of zeros

in the closed unit polydisc are given. The proof technique

rests on a complete formulation of the fact that the zeros of

a polynomial are continuous functions of its coefficients. It
is shown that all other stability related results can be

derived in this manner.

New classes of multivariable polynomials arising in studies

of passive multidimensional systems have been identified and

their properties have been studied. In particular,
polynomials occurring as the numerators and denominators of

multivariable reactance functions and positive functions, are

characterized. Related properties of these and other classes

of multivariable Hurwitz polynomials are also studied. A

nontrivial test for the property of positivity of rational
functions, holomorphic in a domain, in terms of their

behavior on the distinguished boundary is formulated.

The problem of structurally passive synthesis of

multidimensional digital filters as a cascade interconnection

of more elementary building blocks has been addressed via the

factorization of the associated discrete lossless two-port

transmission matrix. Necessary and sufficient conditions for

the factorization to be feasible are obtained. In particular,

it is shown that in one-dimension the factorization can

always be performed, and as a consequence, known filter

structures fall out as special cases of the results

developed. Thus, an alternative algorithm for synthesizing

one dimensional structurally passive digit.al filters is also
obtained.

P.
I.
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The problem of sampling rate alteration of deterministic

multidimensional signals is addressed on the basis of

frequency domain description of the signal. It is shown that

the problem can be formulated in such a way that solutions

can be obtained via filtering techniques known for

one-dimensional signals. Fast non-recursive implementations

of such interpolation and decimation schemes are

investigated. The resulting algorithms can be potentially be

implemented in a combination of parallel and pipelined

architecture. Experiments with digitized images are also

reported to demonstrate the performance of the designed

interpolation and decimation schemes.

The fundamental results developed in the present report open

up ways of investigation into a large number of problems of

both theoretical and practical importance in the area of

multidimensional signal processing. Efficient test procedures

for the various classes of polynomials identified in chapter

3, namely the scattering-Hurwitz, reactance Hurwitz and the

immittance Hurwitz polynomials etc. are lacking and needs to

be developed. Since polynomials of this type, particularly

the scattering Hurwitz polynomials, enter into the

description of passive systems in a fundamental manner, this

should prove to be an important step in designing various

types of multidimensional filters. In this context, a

detailed study into the properties of discrete domain

counterparts of the various multidimensional polynomials

discussed in chapter 3 and their testing procedures also

remain to be carried out. In the area of synthesis of

structurally passive multidimensional digital filter design

the problem has been addressed only in the context of

synthesis in cascade type structure via the factorization of

the transmission matrix associated with a multidimensional

lossless two-port. Other possibilitie- of investigating
synthesizability of lossless multidimensional two-ports in
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structures other than the cascade structure also exist, e.g.,

via the factorization of the hybrid matrix or the transfer

function matrix itself. The need for this investigation is

strongly felt in view of the result established in chapter 4

that in a generic situation multidimensional lossless

two-ports may not be synthesizable as cascade interconnection

of most elementary passive building blocks. Moreover, exactly
how these synthesis schemes can be utilized in special cases

of practical interest when the frequency response of the

filter is required to have certain symmetries, for example,

spherical symmetry (image processing applications) or planar
or conical symmetry (direction finding applications) remains

to be investigated. Attention has only been restricted to the

quarter plane type recursive schemes so far. Other recursive

schemes such as the symmetric or the asymmetric half plane or

the fully recursive half plane recursive schemes and

multidimensional generalizations thereof also needs to be

considered.

The close relationship between passive filtering and

modelling of stationary or nearly stationary stochastic

processes is well known for one-dimensional signals. The

results of the present investigation can thus be potentially

utilized towards resolving problems in the domain of

modelling of random fields e.g., in (spectral) estimation,

and prediction problems associated with multidimensional

signals. Multidimensional extensions of various time/space

varying adaptive filtering schemes can also prove to be an

important topic of future research in this context.

Since generic multidimensional signal processing tasks are

severly computation intensive the feasibility of implemention

of the algorithms resulting from the above studies in

high-speed architechtures is also an important area of

investigation. For example, in the specific problem of fast

image interpolation and decimation dealt with in chapter 5
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details of issues relating to implementation in Systolic 
VLSI

and/or optical architechtures remain to be studied and can

form a topic of future research.
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WSHP

SHP SPHP

SSHP IHP -xRHP

WSHP a widest- sense Hurwitz polynomial

SHP a scattering-Hurwitz polynomial

SPHP a selt-paraconjugate Hurwitz polynomial

SSHP astrict-sense Hurwitz polynomial

RHP a reactance Hurwitz polynomial

| H P a immittance Hurwitz polynomial

Figure 3.1

Hierarchical relationship between various classes

of multidirensional stable polynomials.
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Figure 4.1
Cascade decomp oition of a multidimensional

lossless two-port
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Figure 4.2
First kind of Gray-Markel section
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Fiqure 4.3

Second kind of Gray-H4arkel section
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Figure 4.4
Elementary section of type 1.
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Figure 4.S
Elementary section of type 2.
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Figure 4.6
Elementary section of type 3.
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Figure 5.1 Block diagramp of N-D interpolation
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Figure 5.2 Block diagram of 14-0 decimator
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Figure 5.3 i-th Stage of interpolator and its polyphase structure.
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Figure 5.4 i-th Stage of decimator and its polyphase structure.
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Figqure 5.5 T1ypical implementation corresponding to

gm (ni~ or p~ (ri)
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Figure 5.6 Illustration of test input signals

(Sl),(S2), (S3).
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Figue 5. Inerpoate (Sl, (S), S3).L=2
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Figure 5.8 Interpolated (Si), (S2), (S3). L=3
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Figure 5.9 Decimated (Ti), (T2), MT). M-2.
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Figure 5.10 Decimated (UI), (U2), (U3). M-3.
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